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Lets consider x(n) = Acos(won + f), where f is random variable uniformly distributed

between O, 2p.
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It is an even function too.
Now lets see what happens if we have alimited data points, N

1N(1

Q()—NaX() x(n+¢)  for 30

AZ Not 1

=N na_ocosz(won +f )cosw, (n+ ¢)+f )
' l'J

A2 l Ngf-1 N1

:2—| a cosw,/+ a COS(ZW n+wyl + 2f )y

1T n=0 n=0
% 1st part 2nd part b

: = Re}* N—éﬂ-l ejZ\Ngn >ej(wopj+2f)u

| T n=o

| i 1 jZWO(N—()u

i = Ref glWwor+at) 17 e

T 1- g2

I N . i e
2nd part |: Rel’ v >elzf veJWO(N k)(e ’JW ofN-7) _ .ejv\: ( ))];I

| ‘II* ejWo(e W _ ejWO) g

= Re‘:, engt‘ xgl >ejW0(N -1) ~ 2 Sin(WO(N - 5))[}
! - 2jsinw,

i:cos(w o(N-1)+ 2 )W



67

and the 1% part:

N- /-1
é{ cosw,/ = (cosw, /)N - ¢)

n=o

P §()

= Zil\zl (N - E)cos(w0£)+%cos(wo(N - 1)+ )—sin(v;(;](vl\\llo- )

Now /img (ﬁ)z%coswoé =g(¢) ifwo® 0,p,2p

N® ¥

But f isarandom variable and its presencein ¢ (f) makes g (f) to be a random variable

too. Let'sseewhat kind of estimator it is.

E[Q(E)]:¥g(£)b itisabiased estimator. But, E}[@(E)]%@ g(¢). Therefore, it is
| Ne¥

asymptotically an unbiased estimator

How about its variance?
. 2} A |sin(N - ¢)w,|
0)- my }: e
g( ) nb(k)| 2\/§| Nsinw, |
If we use the following definition for autocorrelation estimation, then it would become an
unbiased estimator. In Matlab, you can aso select this option.
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g: (ﬁ) Er— X;anf
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Thisway, E[é(é)]zg(£)® unbiased estimator. But,
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cost of increasing the variance which is not desirable.

sn(N - /)w,|
(N - £)sinw,|

>s 2, which means we get an unbiased estimator but at the
4(0)
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“Wiener Filters’
d(n)
s(n) i : :
X(n) opft;lTeLrjm y(n) _ o)
W(n)T h(n)

w(n) is white Gaussian noise and d(n) is the desired signal. We normally like to design
the filter such that is suppresses the undesired interference component. There are 3 cases:
1) d(n) = s(n) then the linear estimation isreferred to asfiltering.

2) d(n) = s(n+ D) and D > o, then the linear estimation is referred to as prediction.
Note that this prediction is different from the predictions that we discussed so far.

3) d(n) = s(n—D), then it is referred to as smoothing. The basic assumption is that s(n),
w(n) and d(n) are all WSS process with zero mean. The wiener filter is based on
designing an optimum FIR/IIR filter in the minimum Mean-Square (MMSE) Error
Sense.

FIR Wiener Filter

Since h(n) isfinite, then y(n) (the output) depends on afinite data record x(n), x(n —1)....,

Xx(n—M + 1), where M isthe order of the filter.

y(n)=
Cost function to be minimized is defined as

e = E{leln)}=E{jd(n)- y(n)]

Choosing this as the cost function has mathematical advantages such as having a unique

1

h(k)xx(n- k)

Qo
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1

0

minimum.

Orthogonality Principlein Linear MM SE Estimation

M-1
Output of thefilter: y(n)=g h(k)x(n- k)
k=0

Error: e(n) = d(n) —y(n)
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MSE: e, = E[|e(n)|2J = the length of the vector e(n)
For afilter of degreeM = 2, we have:

A

()
/| e

h(1) x(1
()i() > )

h(1) x(2) .

X(2)

The principle of orthogonality states the length of this error vector is minimum, when
e(n) is perpendicular to the data subspace (i.e. every x(k) point o < k< M — 1) or in other
words E{e’(n) x(n- k)}=0. Where does this conclusion come from?

Let h, =a, + jb, for every filter coefficient. Then form the gradient vector:

1 eln) (n)+ e (n) o)+ fe(n) - (0)+ ¢ (n) e(n)g

|
|
T 3 ay by b,

B o B0
Teln) _ ] Ten) _ i
™, ix(n- k) . +jx (n- k)

Substituting these into N, e,, equation above, we get:

Reey = Ef- x(n- k) (n)- X (n- K)e(n)+x(n- k)& (n)- x"(n- k)e(n)}
= 2x (n- K)e(n)}=-26{x (n- K)e(n)}
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Therefore, minimizing Ne,, =0, means that E{x(n- k)e,(n)} =0, where &, is the

estimation error that results when the filter operates at its optimum condition. This is

called the principle of orthogonality.

Corollary to the Principle of Orthogonality

How about E{y(n)e (n)}?
ly)e ()= £l 4

k=0

1 -1

h(k)x(n- k)& (n%;g h(k)E{x(n- k)" (n)}

Now when the filter is optimized, then E{x(n- k)e(n)}=0 and given that we call the

k=0

output at the optimal condition as yo(n), then we conclude:  E{y, (¢)€;(n)} = 0. It means

that the optimum output is also orthogonal to the error.

&(n) d(n)

Yo(N)

Now we are ready to derive the filter coefficients for the optimum condition.
Using the principle of orthogonality, we have:

=~
1
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Getting the conjugate of the above equation:

M-1
Wiener -Hopf Equations: A h9.(t- K)=g,(¢), ¢=01..,.M-1

k=0
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O, ISthe teoplitz matrix of autocorrelation of x(n) and g, is the cross-correlation of
d(n) and x(n) for 0 < n< M-1 (notethislimits!)

i . — _~1
Inmatrix form: G, .hy =g, P h,, =G, >g_

MMSE=Mine,, M ()i (k) =5 2 - g7 3Gl g, ands 2 = E{[d(n)}”.

||
T 9303

Special Cases
If d(n) = s(n), usualy in practice s(n) and w(n) are uncorrelated. Therefore,

9,.(k)=g.(k)+g,.k and aso g, =g.(k)+g,,(k)=g.(k). Therefore, Wiener-Hopf
\_V_J

0

eguations become:

-1

hy(k)[0 (£ - K)+9uul? - K =04(¢) £=0,...M - 1
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2| =k
k)_ISW
i 0 €se

further g, (¢ -
If d(n) = s(n+ D), D> o,then g (¢)=g_(¢+D). In both situations, the correlation
matrix isteoplitz and Levinson-Durbin algorithm can be used to solve for optimum filter
coefficients.

Example:

We have a process x(n) = s(n) + w(n), where we know s 2 =1 and it is a white Gaussian
noise. We also know that s(n) is an AR process described by the difference equation s(n)
= 0.6 s(n — 1) + v(n), where v(n) is also a white noise Gaussian noise with s ? =0.64.
Design a Wiener Filter with degree of 2 = M to estimate s(n). Also determine MM SE at
Stage 2.

Solution
Wiener-Hopf Equations: G,, *h, =9,,. Assuming that s(n) and w(n) are uncorrelated,

thenwehaveg,, =9, +9,, and also g, =g (notethat d(n)=s(n)). Therefore, we need

9.(0) and g_(1). Inorder to find g, then we can use Y ule-Walker equations:

@.(0) 9s(t)ue 1 u_e64u
&0 9.(0)i& o6l & 0
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Now solving Wiener-Hopf Equations:

¢2 O6uen(lu_elu €045
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=0.45

72



