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Power Spectrum Estimation 
 

Parametric Methods  (Section 12.3) 
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Remember that from Lecture 5, lecture notes, page 36, we have: 
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This is for when x(n) is an AR process.  In case that x(n) is not an AR process but we model it by 

an AR process, then it means ap(k) are the best approximate of the AR coefficients and 2
wpσ  is 

the MMSE.  Then 

                                   ( )
( )

2

1

2

1

ˆˆ
kj

P

k
p

wp
xx

eka
PDSP

ω

σ
ω

−

=
∑+

==  

Recall that ( )
2

1

22 1ˆ ∏
= 













−===

P

k k

kx
f

Pwp

m

kaEMMSE
321

σσ  

** Proof of the equation (**) 
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A special case is when w(n) is white Gaussian noise. Then 
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Non-Parametric Methods for PSD Estimation 

Let’s consider an observation of a stochastic process x(n).  Any observation is a finite record of 

the real process.  Therefore, we can say: 
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  an ideal rectangle window. 

Now let’s see what is the effect of this limitation or truncation of the signal x(n), on its PSD. 
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Let ll −=→−= nkkn  

Range of n:  [0, N – 1] 

      → range of [ ]11: −+− NNl  

Range of k: [0, N – 1] 
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The above can also be reached by the other definition of power spectrum (Fourier Transform of 

the autocorrelation function): 
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N →∞ N →∞ 
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Therefore, the effect of truncation on the power spectrum of the signal is that we get an 

asymptotically unbiased estimator of the true PSD of the signal.  ( )
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“Periodogram”. 

As we said, it is an asymptotically unbiased estimator but its variance is not consistent or low 
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l  and it doesn’t go to zero.  That’s why Periodogram is referred as 

a noisy estimator of the true PSD of x(n). 

There are a few methods to remedy this variance problem. 

 

Bartlet (Averaging Periodogram) Method 

In order to reduce the variance of PSD estimators, Bartlet segmented the data to K segments each 

with length M.  (
M
NK =⇒ , where N is the number of data samples), computed the Periodogram 

of each segment and then got the average of them as the PSD estimator. 

  data of each segment: xi(n) = x(n + iM)   i = 0, 1,…., K – 1 K = # of segments. 

            n = 0, ….., M – 1 M = length of each segment 

 

Periodogram of each segment: 
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Lets see its statistical properties: 
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The bias is 
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truncation. Let's look at the variance of Bartlet Method: 
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Therefore, the variance is reduced by the factor K.  So, it seems as we increase the number of 

segments (K), we reduce the variance of estimator more.  But, this is at the cost of losing 

frequency resolution. What is frequency resolution?  Does zero padding help that? 

 


