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Welch Method 

Welch Method is in fact the modified Bartlet method by the following two modifications: 

1. Segments have an overlap 

2. Applying a window rather than ideal Rectangle window to each segment. 

Therefore, xi (n) ≡ data samples in each segment = x(n + iD), 

where n = 0,….., M -1  M = length of each segment 

           i = 0,….., K -1  K = number of segments 

 To do segmentation in Matlab: 

 For i = 1:  K 
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 So the bias of PSD with the Welch method depends on the shape of data window.  You can 

expect the narrower the main lobe of SWd(ω), the smaller the bias.  But again as usual, the lesser 

bias may cause a larger variance of the estimator. 
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** Note that the K in case of no overlap in above is not the same as the one in the case of 50% 

overlap. 

 

Blackman and Tukey Method (Smoothing Periodogram) 

In this method, you calculate autocorrelation, window it and then take FFT to estimate power 

spectrum. 
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 , where Px is the periodogram. 

The window is chosen to be symmetric and that ( ) πωω <≥ for   0W  so that the power spectrum 

doesn’t become negative.   

Let’s check its bias and variance: 
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but Γx(ω) is in fact the periodogram and recalling that the expected value of the periodogram is 
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If we select w(n) such that M << N, then it means that w(n) is much narrower than ( )lBw .  

Therefore, W(ω) is much wider than WB(ω). Hence, WB(ω) * W(ω) ≈W(ω).   

So, the bias of the Blackman-Tukey estimator is approximated as  
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The variance of Blackman-Tukey estimator has been derived as: 
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where Ew is the energy of the window. 

 

Window Selection for Blackman-Tukey Method 

For a satisfactory Px(ω), the bias should be small, and also the variance of Px(ω) must be small 

compared to ( )ω2
xP .  Equivalently, the variance ratio: ( ){ }
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This is the case if energy of the window NNEw <<≈ β .  It means that w(n) must take 

significant values only in the interval (-M, M) such that M << N.  We assume that ( ) 10 ≤w for 

|n| < M and outside of +M is zero (not necessary but a convenient assumption).  Therefore, 
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22 β  to satisfy the variance to be small, M has to be much smaller than N.  

With M determined to satisfy this condition, then the shape of window is chosen to minimize the 

bias.  So, the most important factor is the width of window, not the shape. 

Summary of window’s properties: 
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We said that the width is more important.  However, one should keep in mind that there is a trade 

off between the bias and variance of the spectral estimation.  Another sensible approach is to 

compromise by making the ( ){ }2
x BfPMSE += ~var , where ( ){ } ( )fPfPEB xx −= ~  as small as 

possible. 

The exact nature of the compromise, which has to be made, will depend on the degree of 

smoothness of the spectrum Px(f).  For example, if Px(f) is very smooth, then the variance may be 

reduced by using a wide window without having serious effect on the bias.  In particular, if Px(f) 
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Hence, when the spectrum is sufficiently smooth, a 

virtually unbiased estimator can be obtained even 

though the spectral window has been made wide (in 

frequency domain) to reduce the variance. 

 

 

Windows Carpentry 

There are several windows. Some of the most popular ones are: 

Rectangular Window:   ( )
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Bartlett (Triangular) Window  ( )
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The Fourier Transform of the above windows (in continuos forms though) are as the followings. 

Note that these formulas slightly changes for the case the widnows are discrete.  
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n = 1, 2, 4 for wR, wB, and wP, respectively. 

As n increases, you’ll see that the log window tends to shape like Normal Curve. 

wR has the narrowest main lobe but big side lobes.  By increasing n, the magnitude of these side 

lobes decreases. 

 

 

Performance Characteristics of Non-Parametric Methods 
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Lets define a measure of quality ( ){ }[ ]
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 which is not good because it means it is independent of N and 

increasing of N is not going to improve the variance and quality. 

For Bartlet Method: 

 As N and M increases, the quality factor goes to K that is the number of segments: 
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             Hence the quality factor becomes 
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The frequency resolution of the Barlet estimate, measured by taking the 3dB width of the main 

lobe of the Rectangle Window is fN
f
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M
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=⇒=∆ .1.19.0
9.0  while fNQW ∆= .39.1 with 

50% overlap and fNQBT ∆= .34.2 . 

Note that N and f∆ are appositely related. 

 

 

 


