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Lecture 5 
Calculating the Inverse Z-Transform 
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  Three methods to calculate it: 

1)  Direct Method by contour integration 

2)  Expansion into a series of terms z/z-1 

3)  Partial Fraction expansion and look-up table. 

 

Cauchy-Residue Theorem 

Let f(z) be a function of the complex variable z and C be a closed path in the z-plane.  If the 

derivative ( )zf
dz
d

 exists on and inside the contour C and if f(z) has no poles at z = z0, then 
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RHS of the above equation is called residue of the pole zo. 

Now suppose the function can be written as ( )
( )zg
zf  where f(z) has no poles inside C and g(z) is a 

polynomial with simple roots z1, z2, …, zn inside C.  Then, 
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= sum at residue of x(z)zn-1 at z = zi and N = 

number of poles. 

Example: Problem 3.56 (C)  
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      Therefore, it has a pole at zero with order of (n–1) and a pole at 1/a. Since 

ROC ( )nx
a
1z ⇒>≡  is right-sided and therefore, it is enough to find where it reaches the zero 

on the left side. 
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With the same method, we can prove that x(-2)=x(-3)=…=0 . 

 

 



 23

The Inverse z-Transform by Power Series Expansion 

The method is to use long division.  How to divide. 

Example: 

                              ( ) ( )( ) 23231
1

211
1

2

2

2111 +−
=

+−
=

−−
= −−− zz

z
zzzz

zX  

It has two poles:  z = 1 and z = 2.  Therefore, if the signal is casual, then ROC:  |z| > 2 and if the 

signal is non-casual, ROC: |z| < 1. 

Case 1: 

ROC:  |z| > 2 → signal is casual and therefore ( ) ( ) n
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 x(n) = {1, 3, 7, 15, 31,…} 

 

Case 2: ROC:  |z| < 1 → signal is non-casual → ( ) ( ) nznxzX −

∞
∑=

0
 has terms with positive 

powers of z.  Therefore, we divide in a way to get z with positive powers. 
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Question:  How would you use this method for a case like ROC:  1 < |z| < 2? 

 

The Inverse z-Transform by Partial- Fraction Expansion 
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Now depending on ROC, we get different x(n). 

 

1)  ROC:  |z| > 1 casual 

      → ( ) ( ) ( ) ( ) ( ) ( ) ( )nunununx nnn 5.022
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2)  ROC:  |z| < ½  non-casual and left-sided 
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       ( ) ( ) ( ) ( ) ( )nununx nn 5.0112 −−−−=  

 

One-Sided Z Transform 

One-sided Z Transform is defined as ( ) ( ) ( ) ( ) nn
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information about x(n) for n < 0.  It is unique only for the causal signals that are zero for n < 0. It 

is useful to solve difference equations of the systems that are not relaxed initially, but the input is 

not necessarily zero before applying to the system. 
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This limit exists if the ROC of (z-1)X+(z) includes the unit circle. 

This can be proved by the following analogy. If the limit )(lim nxn ∞→  exists, then the function 
x(n) can be written as 0)(lim  and  )(lim    where),()( ==+=
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Analysis of the Systems in Z-Domain 

Without too much restriction, lets assume 

                                                   ( ) ( )
( )zQ
zNzx =  and ( ) ( )

( )zA
zBzH =  



 27
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                          H(z) has p1, …., pN poles and X(z) has q1,…., qL poles.   

First lets assume that the poles are distinct and not common.  Then 

                                        

( )

( ) ( ) ( ) ( ) ( )
44 344 2144 344 21

responseforce

L

k

n
kk

responsenatural

N

k

n
kk

L

k
k

k

k
N

k
k

k

k

nuqQnuPAny

zq
Q

zP
AzY

∑∑

∑∑

==

=
−

=
−

+=

−
+

−
=

11

11 11
 

Note that natural response ≠ zero-input response.  It is in fact the no-input response. 
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Testing it with MATLAB: 
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Example of a Non-Relaxed System 
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Taking Z+ from both sides: 
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Note that natural response is due to system poles and force response is due to the input poles. 

Transient response is due to the poles inside the unit circle and steady-state response is due to 

poles on the unit circle. In this case,  
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Note that complete response is either Transient Response+Steady-State Response, or Natural 

Response + Force Response, or Zero-Input Response + Zero-State Response. Each response 

emphasizes a different aspect of system analysis. 

 

Checking with MatLab: 

n = [0: 7]; % just checking the first 8 samples 

;ˆ n
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1x ⋅





=  xic = [1, -2] % terms due to initial conditions (1 – 2z-1) 

b = [1, 0]; 
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y1 = filter (b, a, x, xic);  
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 30

Since y and y1 are the same, then our solution is correct! 

However, for large order difference equations, it is tedious to determine xic(n) analytically.  

MatLab command filtic does find xic as well. 

Xic = filtic (b, a, Y, x) where Y and x are initial conditions. 

Y = [y(-1), y(-2), …, y(-N)] 

x = [x(-1), x(-2), …, x(-M)] 

If x(n) = 0 for n < -1, then x need not to be defined.  In our example: 

Y = [4, 10]; 

Xic = 1, -2 

 

Causality and Stability 

If h(n) = 0, for n < 0, then the system is causal. Then its ROC is the exterior of a circle. The 

stability of a system is quarantined by the condition that the ROC includes the unit circle. 

Because the necessary and sufficient condition for a BIBO system is that ∞<∑
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nhzH )()( . Note that causality and stability are independent of each other. One 

doesn't imply the other. However, a causal LTI system is BIBO if and only if all the poles of 

H(z) are inside the unit circle. 

 

Pole-Zero Cancellation 

Example:  y(n) = 2.5 y(n - 1) – y(n - 2) +x(n) – 5x(n – 1) + 6 x(n – 2) 
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It seems that the pole at 2 is cancelled by zero at 2.  So, the system is theoretically stable but not 

practically. 

Do problems: 3,6,7,9,15,22 and 43 of Chapter 3. 


