
66

Estimation of Autocorrelation Matrix

Lets consider x(n) = Acos(ω0n + φ), where φ is  random variable uniformly distributed

between 0, 2π.
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It is an even function too.

Now lets see what happens if we have a limited data points, N
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Lets simplify the second part first:

                     2nd part 
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and the 1st part:
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But φ is a random variable and its presence in ( )lγ̂  makes ( )lγ̂  to be a random variable

too.  Let’s see what kind of estimator it is.
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asymptotically an unbiased estimator

How about its variance?
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If we use the following definition for autocorrelation estimation, then it would become an

unbiased estimator.  In Matlab, you can also select this option.
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 which means we get an unbiased estimator but at the

cost of increasing the variance which is not desirable.
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“Wiener Filters”

w(n) is white Gaussian noise and d(n) is the desired signal.  We normally like to design

the filter such that is suppresses the undesired interference component.  There are 3 cases:

1)  d(n) = s(n) then the linear estimation is referred to as filtering.

2)  d(n) = s (n + D) and D > o, then the linear estimation is referred to as prediction.

Note that this prediction is different from the predictions that we discussed so far.

3)  d(n) = s(n – D), then it is referred to as smoothing.  The basic assumption is that s(n),

w(n) and d(n) are all WSS process with zero mean.  The wiener filter is based on

designing an optimum FIR/IIR filter in the minimum Mean-Square (MMSE) Error

Sense.

FIR Wiener Filter

Since h(n) is finite, then y(n) (the output) depends on a finite data record x(n), x(n – 1)….,

x(n – M + 1), where M is the order of the filter.
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Choosing this as the cost function has mathematical advantages such as having a unique

minimum.

Orthogonality Principle in Linear MMSE Estimation
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MSE:  ( )[ ]2
neEM =ε  = the length of the vector e(n)

For a filter of degree M = 2, we have:

The principle of orthogonality states the length of this error vector is minimum, when

e(n) is perpendicular to the data subspace (i.e. every x(k) point o < k < M – 1) or in other

words ( ) ( ){ } 0* =− knxneE .  Where does this conclusion come from?

Let kkk jh βα +=  for every filter coefficient.  Then form the gradient vector:
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Substituting these into Mkε∇  equation above, we get:
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Therefore, minimizing 0MK =∇ ε , means that ( ) ( ){ } ,0* =− neknxE o  where eo is the

estimation error that results when the filter operates at its optimum condition.  This is

called the principle of orthogonality.

Corollary to the Principle of Orthogonality

How about ( ) ( ){ }?* nenyE
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Now when the filter is optimized, then ( ) ( ){ } 0* =− neknxE o  and given that we call the

output at the optimal condition as yo(n), then we conclude:  ( ) ( ){ } 0* =neeyE oo . It means

that the optimum output is also orthogonal to the error.

Now we are ready to derive the filter coefficients for the optimum condition.

Using the principle of orthogonality, we have:
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Getting the conjugate of the above equation:
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xxγ  is the teoplitz matrix of autocorrelation of x(n) and dxγ  is the cross-correlation of

d(n) and x(n) for  0 < n < M-1  (note this limits!)

In matrix form:  
dxMxx h

M
γ=Γ .  
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Special Cases

If d(n) = s(n), usually in practice s(n) and w(n) are uncorrelated. Therefore,

( ) ( ) kkk wwssxx γγγ +=  and also ( ) ( ) ( )kkk sssssdx γγγγ ω =+=
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0

.  Therefore, Wiener-Hopf

equations become:
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If d(n)  = s(n + D), D > o, then ( ) ( )Dssdx += ll γγ .  In both situations, the correlation

matrix is teoplitz and Levinson-Durbin algorithm can be used to solve for optimum filter

coefficients.

Example:

We have a process x(n) = s(n) + w(n), where we know 12 =wσ  and it is a white Gaussian

noise.  We also know that s(n) is an AR process described by the difference equation s(n)

= 0.6 s(n – 1) + v(n), where v(n) is also a white noise Gaussian noise with .64.02 =vσ

Design a Wiener Filter with degree of 2 = M to estimate s(n).  Also determine MMSE at

Stage 2.

Solution

Wiener-Hopf Equations:  dxokxx h γ=⋅Γ .  Assuming that s(n) and w(n) are uncorrelated,

then we have wwssxx γγγ +=  and also ssdx γγ =  (note that d(n)=s(n)).  Therefore, we need

( )0ssγ  and ( )1ssγ .  In order to find ssγ , then we can use Yule-Walker equations:
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( ) 10 =⇒ ssγ  and ( ) 6.01 =ssγ
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Now solving Wiener-Hopf Equations:
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