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Lecture 6- Chapter 4
Frequency Analysis of Signals and Systems

Continuous Signals and Discrete-Time Signals

Perio/ Aperiodic

Starting with periodic CT signals:

Recall that a linear combination of harmonically related complex exponentials of the form

+00 ) 1
x(r)= > C,e’”™is a periodic signal with fundamental period T, = = In order to find Cj,
k=—0 o
multiply both sides by e /2ol and integrate over one period:
Tp Tp +00 +00 Tp
J‘x(t)e—jz;mtdt _ Ie—]ZIz’IFOt Z Ckej2ﬂ'kFotdt _ Z ij‘e—]zmk—l)mdt
0 0 k=—o0 k=—o0 0
%/—J
{0 k#l
Tp k=l
17 .
- J‘Px(t)e—jZm’Fot — Cé 'Tp
1 . . .
~C, :—J. x(¢)e>™ " Fourier Series
T 1

p
40
An important issue is that whether z C,e’*™™ representation is equal to x(z) for every moment
k=0
of ¢. The Dirichlet conditions guarantee that this series is equal to x(?) except at the values of ¢ for
which x(z) is discontinuous. At those values of ¢, the series converges to the midpoint (average
value) of the discontinuity.
Dirichlet conditions are:
1) x(¢?) has a finite number of discontinuity in any period.
2) x(t) has a finite number of maxima and minima during each period  sufficient but not

3) x(?) is absolutely integrable in any period: necessary
ITp |X(ZX < 0

A weaker condition is that signal's energy in one period should be finite: [z, |x(t)2dt <0
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Power Density Spectrum of Periodic Signals
A periodic signal has infinite energy but finite average power.
Parseval’s Theorem:

1 1 x
P, = ——Ip, [x(t) dt = — 17, x(e)x" (1)t
TP TP

= LITp x(t)"'zo:o CI*(e—J'ZﬂKFotdt — i*‘io Cj*{ J.Tp x(t)e—jZﬂKFotdt
’ - P T,Cy
+o0 2
= _ZOO|CK|

If x(2) is real then C, =C_, — |Ck|2 =|C; * = PSD is an even function in frequency and the

phase is an odd function.

Example:
x(1)
A
A
® . > !
-T, -7/2 72 T,

C =LJ'T/2Ae_j2”kFOtdt=i e—j27IkFOt A
for e T,| - j2nkF,

7
AF kT, 2 T, rmkEr
:ﬂsinc(ﬂkFor)

» F
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Now if % decreases (T > oo), then C; — 0, which means the signal becomes aperiodic —
p

average power becomes zero.

CT Aperiodic Signals

We can say x(t) = lim xp(t) = Z-) I

Tp —0

+00 +0
1

x(7)= J.x(F)ejz”F’dF =— | X(Q)e™dQ and
i 27 -,
X(F)= jx(t)e‘jz”ptdt = jx(t)e_'igtdt

Aperiodic signals are energy signals.

E, = T|x(t)|2dt
2

= T|X(F)| dF

Energy Density Spectrum: Sy(F) = |X(F)|’

A couple of points:

1) Remember that from only ESD or PSD we cannot reconstruct x(z) because phase information
is lost.

2) Ci for x,(t) is just samples of X(F)
C, = Tipx(kFo )

DT Frequency Analysis

First consider a periodic DT signal x(n) = x(n + N)

Jort.
Multiply both sides by e N and sum over one period.



N-1 —j27r£n N-1 N-I jZﬂM-n
> x(n)e = N = Y Cye N
n=o n=0 K=o
H_\i ~ J
Vol N, ifa=1
an: l_aN . N!fK_KZO,iN,iZN
p , ifa#1 =
l1-a 0 else

R

Interchange the
sums

1 N-1 ]
C, Y x(n)e >V k =o,..N —1
o
X(l’l): CkeJZﬂkn/N
K=o
N-1 2 1 Mt 2
Power P :kZ_:|Ck| :W 4 |x(nx

*DTEFS is periodic like Periodic DT*
Ci+n = Ci. Therefore, the spectrum of a periodic DT, x(n), is also periodic with period N.

Ck+N _ %jzz_;x(n)e—jzz(kw)nw _ %gx(n)e—jZHkn/N _ Ck
Example
Find DTFS of the following signals:
x(n) = cos 2%[ n +sin 2% n N =15 The smallest common denominator
OO

For this case, we can directly write it is a sum of exponentials.

2rn 2rnn 2rxn \2-3)2xn
1| =5 3 1] 7= it 3)
X (I’l)=— e +e =—|e +e
! 2 2 —
2(27)n
/ 3
e
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2rn 2rn 27n 4-5)2rxn
2r I 7= I 1| = ! 5)
x,(n)=sin"=n=—"1e —e =—1/e —e
5 2j 2j
1 -1
— C; =—, C, =— forx,(n) and 0 else where.
2j 2]

C; for x(n) is like C, +C2,

1 k=3

2j

1

— k=510
C, =12

_—1 k=12

2j

o else

Fourier Transform for Aperiodic D.T. Signals

x(e )= X(w)= z x(n)eron

1 jon
x(n)= gy X(w)e™™ de

+00
(recall that for C.T. signals it was over > and here is over 2z which means that X(w) is

—

periodic).

Two Basic Differences Between CTFT and DTFT:
1) X(w) =X(€") is periodic with period 27

X(a) + 27zk) = f x(n)e_j("’”k”)" = ic x(n)e_j‘”” = X(a))

2) Since X(w) is periodic, (in fact a it is a periodic C.T. signal), then it has a Fourier Series
and in fact x(n) are the coefficients of that Fourier Series.
Before visiting a famous example, let’s review the concept of convergence.

If we have a limited observation, we will have the truncation effect, and the famous theory of the

N
Gibbs. Let X, (@)= Zx(n)e‘j”” if 1im|X v(@)-x (a))| — 0, then Xy(@) converges uniformly
| S —

n=-—N
N—x
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to X(w) as N — oo. This convergence is guaranteed if x(n) is absolutely summable (3" Dirichlet

condition).

+00

Z x(n)e_j o

—00

Slx(n) <o this implies |X(w) =

< §|x(n)| < oo, which means X(w) exists and is

somehow band limited and hence, the uniform convergence.
However, this is a sufficient condition. If x(n) is not absolutely summable but square summable

(finite energy) then X(w) can exist.
+w 2 . . .

If E.=% |x(n)‘ < oo, there is not a uniform convergence but there is a mean-square
—00

convergence.

2

lim J.|X(a))— XN(a)] dw =0 = lim E(error) — 0

N—o© N—o

Meaning the energy of error goes to zero but not necessarily the error itself.

x(n)

v

The example of this particular case is the sinc function.

( ): sinw,n

xX\n —0<n<o

b

mn

N .
This is not absolutely summable. Hence, the X, (a)) = Zx(n)e” “" doesn’t converge to X(w)
-N

uniformly for all @. However, x(n) has a finite energy £, = &. So Xy(w) converges to X(w) in
V4

mean square Sense.
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N sinw.n _;
Xy(o)=x e /"
-N 7n
sin 7z x
Matlab definition: sin c( )
X

Section 4.2.12
There are two time-domain characteristics that determine the type of signal spectrum and they

are: Periodicity and Continuity

Signals
Continuous Discrete-Time
Periodic Aperiodic Periodic Aperiodic
Aperiodic Aperiodic Periodic Per10dlc
& & &
Discrete Continuous Discrete Contmuous
Spectrum Spectrum Spectrum Spectrum

** Periodicity with period « in one domain automatically implies discretion with spacing / n

the other domain.
Properties of the Fourier Transform for Discrete-Time Signals

1. Real signals — if x(n) is real, the X*(w) = X(-w)

Spectrum magnitude: |X (a))| = |X (— a))| —even function
Spectrum phase < X (-~ @)= — < X (@) — odd function.
Real and even x(n) — Real and Even X(w)

Real and odd x(n) — Imaginary and odd X(w)
Imaginary and odd x(n) — Real and odd X(w)
Imaginary and even x(n) — Imaginary and even X(®)

Linearity a;x;(n) + bxa(n) s aXi(®) +bXy(w)

A T o T

Time-Shifting x(n) £ X(w)
x(n-k) _E e X(w)
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8. Time-Reversal x(n) £ X(w)
x(-n) s X(-w) Therefore, FT of an even function is an even function too.

9. Convolution: x;(m) *x,(n) _K, X/(®).X(®)

<>
Proof:
x(n) = z % (K)x, (n—k)
x(o)= 3 3 xlb)x (k) e
= 3 5 (k)e” 3w —k)e
= 1;(2@))( ,(w) o

10. Correlation Theorem: Ty x, (n) é Xi(w)X>(-w)

Proof:

+00

o ()= 20 3 (k)x (k=)

Cross-Energy Pt

Density Spectrum
=z
+00 +00 +00

Ser,@)= 3 r (e’ =3 % x(K)p,(K-n) ¢’"

n=-—x© n=-ow K=-o e—jm(an).e—jmK

RHS= % x;(K)e /K b xz[—(n—K)]e_jw("_K)
K=—0

n=-—00

X (w) X, (_a))
Now if x(n) is real, then X (@) =X(-®)

Energy Spectral Density
11. Frequency Shifting

12 Modulation Theorem



x(n)cos(wyn) <> %[X(a) +o,)+X(w-,)
cos(w,n) = %[e./wn” + e’-””ﬂ”]

13. Parseval Theorem

S 3 (1) () =

1 % i}
— EJ.XI(W)XQ(&))da)

Proof:
1 7 & Zion |
RHS = EJ;LZ_:‘CXI (n)e / j|X2 (w)da)

= Y[ Ko do = 35 o ()

n=—0 n=—0

%' (n)

Special case: x, (n) =X (n) - Z|x(nX2 = ibﬂ |x(a))‘2da)

14. Windowing

x(w)= on(n)e_jw” = +Zcoxl(n)xz (n)e 7"

—00 —00

RHS = z% [ ¥ (z)ewcu}z (n)e~"

1 & 4 o
=5 [ X2 T ke e

1 1

L o=t

15. Differentiation in Frequency Domain

d

[X\(@)* X, (o))

39
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Skipping to Section 4.4.8

Correlation Function and Power spectra for Random Input Signals

When the input signal is random, then we have to consider statistical moments of input and
output. So here is a bit of introduction about “Stationary Random Process”. Starting with the
Definition of Stationary Signals:

If X() is a random process with a point Probability Density Function (PDF),

P(x)= P(x,l,xt2 ,xm...,x,n) for n random variables. X(z,)= x(z,), 2

x(t,51)
A
t
xi(t) X6+ One Observation
e Set 1
/\I—\ /\/_\/‘ t
1 | : utr u
| |
|
xSy ) | |
| |
' :
: | X(t+7)
: Set 2
| |
I Xa(ty) [\'/\ I
| I g
15} : V TtH_T \/\/
| |
X(t,S3) A : :
: : x3(t+17)
| |
: Y
x3(t) | | Set 3
|
|
| | » !
|
t ! l/\l\_JtJr \\{M
T
If the joint probability of P(x,,x,,.....x, )" = P(x,,...x,}""" for all 7, ard >then the random

process X(?) is stationary in strict sense. In other words, statistical properties of a stationary
random process is time-invariant, meaning that its mean and variance and other moments are

time invariant.
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Statistical (ensemble) Average

+o0
E (x,l_ ) = j- X, P(xt[ )dxt[

) 1 )
If we don’t have P(x,) but have many observations, then E (xt' ): n (xf‘ + X1 X ), which of

a stationary process it is equal to E(x") for any ¢,.

Also autocorrelation function:
ym(x x'? '”x”x’sz x' )a’x”dx’2

_ E[xtl 2

If this 7. depends only on the time difference #; — £, = 7, then y_(7)=E [x,,x,,. ], which is the

t1>tl+r P
case for stationary process. If a process has two features:
1) Its 5. depends only on time difference, 7, and
2) Ex") = Ex"?) = Ex")
then the process is said to be stationary in “wide sense”.
Now if all statistical averages can be obtained by one single realization (or one sample set), then

the process is also “Ergodic” meaning Ensemble average = time average.

N-1

.= B, and o, =3 ()

n=o

X

M. 1s an estimate of z. It will be said it is an unbiased estimate if E(,sz) =u_ . Also,itis a
good estimator if

yx2—>0 as N > o

var(i,) = E(a|) -

Therefore, time average — ensemble average.

Autocorrelation:  y_(m :—z x"(n)x(n +m) Ely (m)]=r_(m) the true autocorrelation.

Now back to systems:

x(n)—>| ) |5 y(n)
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b, =B} = B| k) )

- iz:“h(k) E{x(n—k)}= ﬂ"g‘h(k) = 1,H(0)

The autocorrelation sequence:

7,(m)= E{y*(n)y(n + m)}: E{kih(k)X*(” k) Kih(f)x(n +m— 5)}
- iih(k)h(f)E{x(n — k).x(n +m— f)}

Special Form: when x(n) is a white noise, then y_(m)= o28(m) and o = y_(0). Then
7,,(m)=cly,,(m)
7,,(0)=c2y,,(0)= o2 1 I|H(w)|2dw
»y x/ hh x 272_ 3
by getting the Fourier transform in general:
@)= Y7, (me™™

- i{iih(k)h(l)n(m I+ k)}e,,m

m=—n|_k=-o0l=-wn

let u=m—I+k=e’™ =e’™ e’ ™

I (0)= Z h(k)e™™ Z h(De ™ Z 7. (we ™
=H(-w).H(o)I' (o)
If the signalis real =T (a))|H(a))|2



