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Digital Filters, Chapter 8 
 

Basically, there are two categories for the design of filters: IR and IIR.  FIR can have linear 

phase within their passband.  In general, an IIR filter has lower side lobes in the stop-band.  

Therefore, if some phase distortion can be tolerated, the IIR filter is preferable, mainly because 

its implementation is easier, fewer parameters and less memory is required. 

Causality 

An ideal low pass filter is:  ( )
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Clearly this h(n) is non-casual and hence it is impractical to build. 

Paley and Wiener proved that if ( ) ∞<∫−
ωω

π

π
dHnl , then h(n) would be casual.  This means 

that |H(ω)| can be zero at some frequencies but cannot be zero over a finite band of frequencies.  

Therefore, any ideal filter is non-causal. 

Causality also makes the |H(ω)| and θ(ω) to be interdependent.  In general, it imposes the 

following: 

1)  |H(ω)| cannot be zero over a band of frequencies. 

2)  |H(ω)| cannot have an infinitely sharp cutoff from pass-band to stop-band. 

3)  Hr(ω) and HI(ω) are interdependent and therefore |H(ω)| and θ(ω) are also interdependent. 
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To ensure that the FIR has a linear phase, it should satisfy: 

( ) ( )n1Mhnh −−±=  for n = 0,….., M – 1 (to be symmetric/anti-symmetric about mid-point). 
( ) ( ) ( )zHzHz M ±=−−− 11  → means that the roots of H(z) are also roots of H(z-1) – the root (or 

zeros) have to be in reciprocal or complex conjugates. 

 

Design of the Linear Phase FIR Filters Using Windows 

In this method, we begin with the desired response features of Hd(ω) and determine its hd(n) and 

then truncate it to become FIR.  ( ) ( ) ( ) ( ) ωω
π

ω ωπ

π

ω deHnhenhH nj
dd

nj

n
dd ∫∑ −

−
∞

=

=→=
2
1

0
.  Now 

truncation of hd(n) is as if we multiply it by a rectangle window:  ( )
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Then h(n) = hd(n) ⋅w(n) →H(ω) = Hd(ω) *W(ω). 
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Therefore the magnitude of the window is ( ) ( )
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As the M increases, the main lobe becomes narrower.  However the peak of side lobes remain 

almost unaffected because their width decreases as M increases but their peak also increase.  

Therefore, their area and their normalized peak remain unaffected.  As discussed before, there 

are many other windows to remedy the side-lobe effects of the Rectangular window.  Summary 

of some windows is in page 626 – 627. 

 

Starting with ideal filters in time domain and then truncate it by a window.  Let's consider an 

ideal LPF: 
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    α is delay or shift to make the hd(n) having linear phase. 
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Now lets truncate it by a rectangle window: 
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h(n) = hd(n) ⋅ w(n), where w(n) in general is: 
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Note that since w(n) has a finite length equal to M, its frequency response has a main lobe with 

the width proportional to M
1 .  The main lobe produces a transition band in H(ω) whose width 

is responsible for the transition width. 

The side lobes produce ripples that have similar shapes both in the pass-band and stop-band.  

Now for a rectangular window, we have: 
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Window 

Transition Width  

Approximate                           Exact 

Min. Stop-band 

Attenuation 

Rectangle 
M
4π  

M
81 π.  

21 dB 

Barlet 
M

8π  
M
16 π.  

25 dB 

Hanning 
M

8π  
M
26 π.  

44 dB 

Hamning 
M

8π  
M
66 π.  

53 dB 

Blackman 
M

12π  
M

11π  
74 dB 

 



 94

%% Example of designing a digital FIR LPF filter with 
%% wp=0.2pi, ws=0.3pi, delta1=0.25 dB and As=50 dB 
 
%% creating an ideal hd(n) with M=6.6pi/(ws-wp)  
clear 
wp=0.2*pi; ws=0.3*pi; 
tr_width=ws-wp; 
M=ceil(6.6*pi/tr_width)+1;  %M=67; 
 
wc=(wp+ws)/2; 
alpha=(M-1)/2; 
 
n=0:M-1; 
hd=sin((n-alpha+eps)*wc)./((n-alpha+eps)*pi); %% hd is the ideal LPF filter 
with a shift of alpha to be causal. 
W_ham=hamming(M); %% Hamming Window 
h=hd.*W_ham';     %% the actual filter 
 
[H,w]=freqz(h,1,1000,'whole'); 
H=H(1:501); 
H_dB=20*log10(abs(H)+eps)/max(abs(H)); 
w=w(1:501); 
delta_w=2*pi/1000;   %% scaling the w axis according to sampling rate 
Rp=-(min(H_dB(1:wp/delta_w+1)));  % Actual passband ripple =0.019 
As=-round(max(H_dB(ws/delta_w+1:501)));  % Actual stopband ripple =51 
 
%%plotting 
subplot(2,2,1); stem(n,hd); title('Ideal Impulse Response of the LPF') 
axis([0 M-1 -0.1 0.3]); xlabel('n'); ylabel('hd(n)') 
 
subplot(2,2,2); stem(n, W_ham); title('Hamming window') 
axis([0 M-1 0 1.1]); xlabel('n'); ylabel('W(n)') 
 
subplot(2,2,3); stem(n,h); title('Actual Impulse Response of LPF'); 
axis([0 M-1 -0.1 0.3]); xlabel('n'); ylabel('h(n)') 
 
subplot(2,2,4); plot(w/pi,H_dB); title('Magnitude of H(w) in dB'); 
axis([0 1 -100 10]); xlabel('frequency in pi unit'); ylabel('dB'); 
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Design of Optimum Equiripple Linear Phase FIR Filter 

In previous method, the most important disadvantage is the lack of control on ωp and ωc and ωs.  

This method is formulated as Cheby-Chev approximation problem.  It is viewed as an optimum 

design criterion in the sense that the weighted approximation error between the desired Hd(ω) 

and the actual H(ω) is spread evenly across the pass-band the stop-band minimizing the 

maximum error.  So, our filter in pass-band must satisfy: 

                                     ( ) prH ωωδωδ ≤+≤≤− 11 11  

and in stop-band            ( ) srH ωωδωδ >≤≤− 22  

Now consider the case of a symmetric h(n) = h(M-1-n) with M to be an odd number. 
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Now lets choose a weighting function for the ripples. 
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Now we can define the weighted approximation error as  ( ) ( ) ( ) ( )[ ]ωωωω rdr HHWE −= .  The 

Cheby-Chev approximation is basically to determine a(k) that minimizes the maximum absolute 
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value of E(ω) over the frequency band which approximation is to be performed.  In a sense, we 

seek solution to the problem 

Min error over a(k) = [ ] [ ][ ])()()(min)( ωωωω
ω

rdr

s
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Since E(ω) alternates in sign between two successive external frequencies, it is called 

“alternation theorem”. 
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This means that Hr(ω) can have at most L – 1 local Maxima and Minima on the interval 0 < ω < 

π.  In addition, ω = 0, π are usually extrema of Hr(ω) and also of E(ω).  Therefore Hr(ω)  has at 

most L – 1 + 2 = L + 1 extremal frequencies.  Furthermore, the band-edge frequencies ωp and  

ωs are also extrema of E(ω), since |E(ω)| is maximum at ω = ωp and ω = ωs. 

Therefore, there are at most L + 3 extremal frequencies in E(ω) for the unique and best 

approximation of the ideal low-pass filter.  So by selecting the desired alternation frequencies, 

we have a set of linear equations: 
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Remez algorithm solves the above equation recursively.  (Matlab function:  “remez”) 

(s consists of pass-band and stop-band) 
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Using Direct Method to solve the equations with MatLab 

Example 

Assume:  L = 4 and goal is to design a low pass filter with ωp = 1 and ωs = 1.5 rad/s. 

Try this code:   ωp ωs       π 

 

freq =  [0, 0.5 1 1.5 2.3 3.14]'; 

  D  =  [1  1 1 0 0 0]';  

FREQ = freq * [0:  4]; 

Cos_Matrix = cos(FREQ); 

wt = [1 1 1 1 1 1]';  % using 1 as weights for  
1

2
δ
δ  

wtt = [1 -1 1 -1 1 -1]'./wt; 

Gamma = [cos-Matrix wtt]; 

a= Gamma\D; % this is equivalent to a = Gamma-1*D 

h1 = [a(5)/2, a(4)/2, a(3)/2, a(2)/2]; 

h = [h1  a(1)  flip ( )1hrl ]; 

delta = a(6); 

[H, f] = freqz(h, 1); 

Plot (f, abs(H)); 

Solving same problem with Remez algorithm 

freq = 



 1pi

51
pi

10 ,.,, ; 

d = [1    1 0 0]; 

h = remez (8, freq, d); 

[H, F] = freqz (h, 1); 

Plot (F, abs (H)) 

If you use wt = [2 1] and then remez (8, freq, d, wt), then you will get twice the tolerance in stop-

band than in pass-band as wt is the weighting function. 

Note that is these ω1 to ω6 are all extremal frequencies, the delta will be the maximum error 

defined in the formula.  But if ω1 to ω6 are not all extremal frequencies, still there is a solution 

but δ will not be the maximum.  Remez exchange algorithm first selects L + 2 arbitrary 
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frequencies in [0  ωp] and [ωs  π].  The band edge frequencies ωp and ωs must be included in the 

set.  Including 0 and π are unimportant.  Then the algorithm runs as direct method in Program in 

the example and checks if ( ) δω =≤ mee  is true for all ω in the set or not.  If yes, the selected 

frequencies are all extremal and the filter is optimum.  If not, Remez algorithm selects four 

frequencies besides ωp and ωs that makes the slope of e(ω) to zero or equivalently has a peak 

ripple locally and runs Program again.  This is also called Parks-McClellan algorithm. 

Note that selecting the frequency set as the one in the program of the example, 09605.0== meδ  

which is not the largest error.  Next you may select a different set of frequencies and retain 0, 1, 

1.5. 

 

 

 

 

 

 

 


