
 83

Adaptive Filter Theory

APPLICATION OF ADAPTIVE FILTERS

()nd̂
filter ()nŵ

Σ
Adaptive
weight control
algorithm

d(n)

u(n)

e(n)
–

Plant

Adaptive
Filter

System
Output

y
-

U

+
d

e

Σ

a) Identification

System
Input

 84

Output
Plant

Adaptive
Filter

Delay

Σ

+
d

e

y

u

-

Input

b) Inverse Modelling

Delay Adaptive
Filter Σ

Output

Input

+ d

y e u

u -

c) Prediction

Σ
Adaptive

Filter

Primary
Signal

Ret
Signal

Output

s(n) + w(n)

Sin(60H) e = s(n) y

d +

u

wi(n)

w(n)

-

d) Interference Cancellation

 85

Least-Mean-Square (LMS) Adaptation Algorithm:

 () () ()ndndne ˆ−=

 () () ()nunwnd H ⋅= ˆˆ () () () ()[]TMo nwnwnwnw 11 ˆ,...,ˆ,ˆˆ −=

* H is the Hermitian Transposition () () () ()[] TMnunununu 1,...,1, +−−=

Cost function is defined as J(n) = E{|e(n)|2}.

By taking the gradient vector (similar to Wiener-Hopf Equations) we will have:

 () ()nw22nJ uuud ⋅+−=∇ Γγ ,

where
() (){ } ()
() (){ } () vectorMaisnununuE

sampleaisndndnuE
H

uu

ud

1

*

×⋅=Γ

⋅=γ
.

The simplest choice of estimators for Γuu and ϒdu is to use instantaneous estimates that are based

on sample values of the tap-weight input vector (u(n)) and desired response as defined below.

 () () ()nunun H
uu ⋅=Γ̂ and () () ()ndnundu

*ˆ ⋅=γ

 () () () () () ()nwnunundnunJ H ˆ22ˆ * ⋅+⋅−=∇⇒

 Minimizing this gradient vector by steepest-descent algorithm, leads to a recursive equation for

updating the tap-weight vector:

 () () () () () ()
() ()














⋅−+=+
444 3444 21

scalarane

H nwnundnunwnw
*

ˆˆ1ˆ *µ

What is the steepest-Descent Algorithm?

z-1

()nw*
1ˆ ()nw*

0ˆ

Σ

Σ Σ Σ

z-1

()nwM
*

1ˆ − ()nwM
*

2ˆ −

u(n – M +2) u(n – M +1)

d(n)

e(n)

()nd̂

 86

Steepest-Descent Algorithm is one of the oldest methods of optimization. To find the minimum

value of the Mean-Squared error, Jmin, this algorithm suggests:

1) Begin with an initial value w(0) for the tap-weight vector, to provide an initial guess for

minimum point of the error performance surface. w(0) is usually set equal to the null vector.

2) Using the initial guess, w(0), compute the gradient vector, ∇J(n) as the following

 let () () () () () () ()[] T
MM njnnjnnjnnw 111100 ,...,, −− +++= βαβαβα

 Then

()
()

()
()

()
()

()
()

()
()

()
()

() () ()nwnn

n
nJj

n
nJ

n
nJj

n
nJ

n
nJj

n
nJ

nJ uudu

MM

oo

⋅Γ+−=































∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

=∇

−−

22)(

11

11
γ

βα

βα

βα

M .

3) Compute the next guess at the tap-weight vector ()nŵ by making a change in the initial or

present guess in a direction opposite to that of the gradient vector.

 () () ()()nJnwnw ∇−⋅+=+ µ
2
11 , where µ is a positive real-valued constant. The factor ½ is

used merely for the purpose of canceling a factor 2 that appears in the formula for ∇J(n).

 () () () () ()[]nwnnnwnw uuud
Γ−+=+ γµ1 or

 () () () () () () ()[] () () ()nenunwnwnunundnunwnw H ** ˆˆˆ1ˆ ⋅⋅+=⋅−⋅+=+ µµ

We observe that µ controls the size of incremental correction applied to the tap-weight vector as

we proceed from one iteration cycle to the next.

How µ should be chosen?

Stability and convergence analysis of the Steepest-Descent Algorithm, gives the criterion that µ

must satisfy this condition:
max

2
λ

µ <<o , where λmax is the largest eigen value of the correlation

matrix Γ of the input. In practical applications that knowledge of Γ and λmax is not available, µ is

chosen as []Γ<<
tr

o 2µ . tr[Γ] is the trace of matrix Γ : [] ∑
=

=Γ
M

i
itr

1

λ . We may go one step

further by noting that the auto-correlation matrix Γ is not only positive definite, but also a

 87

Teoplitz matrix with its main diagonal equal to ϒ(0). Since () 20 uσγ = is itself equal to mean-

squared value of the input at each of the M taps of the filter, then we have:

[] () ()[]

powerinputtap

knuEMtr
M

k
uu

−=

−=⋅=Γ ∑
−

=

1

0

20γ

Notes:

With a small value of µ, adaptation is slow, but the MSE after adaptation is small too. On the

other hand, when µ is large, the adaptation is relatively fast but at the cost of an increase in MSE

after adaptation. Thus, µ may be viewed as the “memory” of the LMS algorithm.

Summary of the LMS Algorithm

Parameters: M = # of taps

 µ = step-size parameter

()[]∑

−

=

−
=

−
<< 1

0

2

22
M

k
knuEpowerinputtap

o µ

Initialization: () 00ˆ =w unless there is a prior knowledge.

Given: () Mnu = - by -1 tap input vector at time n.

 d(n) = desired response time at n

To be computed:

 ()1ˆ +nw = estimate of tap-weight vector at time n + 1

Computation:

 () () () ()nunwndne H ⋅−= ˆ

 () () () ()nenunwnw *ˆ1ˆ ⋅+=+ µ

Normalized LMS Algorithm

The moralized LMS algorithm may be viewed as the solution to a constrained optimization

(minimization) problem. Specifically the problem of interest may be stated as follows:

Given the tap-input vector u(n) and the desired response d(n), determine the tap-weight vector

()1ˆ +nw so as to minimize the squared Euclidean norm of the change,

() () ()nwnwnw ˆ1ˆ1ˆ −+=+δ subject to the constraint: () () ()ndnunwH =+1ˆ .

 88

Lagrange multipliers are used to solve this problem, and the result is called Normalized LMS

Algorithm.

Summary of Normalized Algorithm

M = # of taps

µ̂ = adaptation constant, 2ˆ << µo

a = a small positive constant

Initialization: () 00ˆ =w

Given: u(n): M by 1 tap-input vector at time n

 d(n): desired response at time n

Compute:

 () () () ()nunwndne Hˆ−=

 () ()
()

() ()nenu
nua

nwnw *
2

ˆˆ1ˆ ⋅
+

+=+
µ

As you see, µ̂ is divided by the norm of u(n) and hence, the name “Normalized”. In case of

having very small input, numerical difficulties may arise due to the division to || u(n)||2, then we

may define ()
() 2

ˆ

nu
n µµ = and in this light Normalized LMS may be viewed as LMS with a

time-varying step-size parameter. The rate of convergence of the Normalized LMS is faster than

the conventional LMS Algorithm.

 89

Recursive Least Squares Algorithm (RLS)

() () () () ni1iunwidie H ≤≤⋅−=

() () () ()[]
() () () ()[] T

M

T

nwnwnwnw

Miuiuiuiu

110 ,...,,

1,...,1,

−=

+−−=

Note that here the tap-weights of the filter remain fixed during the observation interval 1 < i < n

for which the cost function ε(n) is defined as: () ()2
n

1i

in ien ∑
=

−= λε where λ is a positive constant

close to but less than 1. When λ = 1, we have the ordinary method of least squares. λ is called

the “forgetting factor”. The optimum value of the tap-weight vector ()nŵ , for which the cost

function ε(n) attains its minimum value is defined by the normal equations as the following:

 () () () () () ()()nznnwnznwn ⋅=⇒=⋅ −1ˆ,ˆ φφ

where () () ()iuiun H
n

1i

in∑
=

−= λφ M by M correlation Matrix

and () () ()idiunz
n

i

in *

1
∑
=

−= λ M by 1 cross-correlation vector

Taking the term corresponding to i = n from φ(n) equation, it can be written as:

 () () ()
()

() ()nunuiuiun H

n

H
n

i

in +



















=

−

−

=

−−∑
44 344 21

1

1

1

1

φ

λλφ

 () () () ()nununn H+−=⇒ 1φλφ

With the same method z(n) can also be written as

 () () () ()ndnunnz *1 +−= λ

Matrix Inversion Lemma

Let A and B be positive definite M-by-M matrices related by A = B-1 + CD-1CH, where D is

another positive definite N-by-M matrix and C is a M-by-N matrix. Then according to this,

Lemma: A-1 = B – BC (D + CH BC)-1 CH⋅B.

Now let () () () IDnuCnBnA ==−== ,1, λφφ , then the ()n1−φ can be found. Let ()nP 1−= φ .

Then

 90

 () () () () ()1nPnunK1nPnP H11 −−−= −− λλ ,

where () () ()
() () ()nunPnu

nunPnK H 11
11

−+
−

=
−

λ
λ

Continuing working on these equations leads to RLS Algorithm:

RLS Algorithm

M = number of taps and λ = forgetting factor < 1

Given u(n): M-by-1 tap-input vector

 d(n): desired response.

Initialize: () σσ ,0 1 IP ⋅= − = small positive constant (i.e. 0.25)

 () 00ˆ =w

For each instant of time, n = 1, 2,…., compute:

() () ()
() () ()

() () () ()
() () () ()
() () () () ()11

1ˆˆ
1ˆ

11
1

11

*

1

1

−⋅⋅−−=

+−=

⋅−−=

−⋅+
−

=

−−

−

−

nPnunKnPnP

nenKnwnw
nunwndne

nunPnu
nunPnK

H

H

H

λλ

λ
λ

A few key features of the RLS Algorithm

• The mean of the learning curve of the RLS algorithm converges in about 2M iterations,

where M is the number of taps of the filter. Therefore, the RLS convergence rate is much

faster than that of LMS Algorithm.

• As the number of iterations, n, approaches infinity, the mean-squared error of RLS

approaches a final value equal to the variance σ2 of the measurement error. In other words,

in theory, RLS algorithm produce zero error as n → ∞.

• Convergence of the RLS algorithm in the mean-squared sense is independent of the eigen

value spread of the correlation matrix of the input vector.

