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Lecture 4 

Properties of ROC 

1) ROC is a ring ∞≤<<≤ 21 rzro  

2) The Fourier Transform of x(n) converges if and only if ROC of X(z) includes the unit circle. 

(Remember, z = rejω and if |z| = 1 then r = 1 and then ( ) ( ) ( ) njj enxeXzX ωω −
+∞

∞−
∑==  = 

Fourier Transform of x(n).  So, if X(z) convergence region includes the unit circle, then 

X(ejω)=X(ω) exists.) 

3) ROC cannot contain any poles. 

4) If x(n) is finite, then ROC is the entire plane except z = o/∞ 

5) If x(n) is right-sided (i.e., x(n) = o for n < N1, < ∞) ROC is the exterior of the largest pole. 

6) If x(n) is the left-sided (i.e. x(n) = o for n > N2 > -∞) then ROC is the innermost ring of the 

smallest pole. 

7) If x(n) is two-sided, ROC consists of a ring in z plane, bounded on the interior and exterior by 

a pole and not containing any pole. 

8) ROC must be a connected region. 

 

Properties of the Z-Transform 

Time Shifting: x(n – k)       Z    z-k X(z) 

Linearity: ax1(n) + bx2(n)          Z    aX1 (z) + bX2 (z) 

But we cannot say ROC = ROC1 + ROC2 

Example 1: 
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The function ( )1
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 has two poles at 0 and 1, but z = 1 is not a pole for X(z) 

because it is defined to be 1 at z = 1.  Therefore, ROC ≡ the entire plane except z = 0. 

Now using Z-Transform properties: 

                                                 x(n) = u(n) – u(n – N) 

                                     ( ) ( ) ( ) ( ) 11
111 −

−−

−
−=−=

z
zzUzzX NN  

and ROC of this one is |z| > 1 while that is different from ROC found earlier. 

So, if the linear combination of several signals has finite duration, the ROC of its z-transform is 

exclusively dictated by the finite duration of this signal and not by the ROC of the individual 

transforms. 

Scaling  ( ) 





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a
zXnxan  ROC:  |a| r1 < |z| < |a| r2 

Time-Reversal  ( ) ( )1−↔− zXnx         ROC: 
12 r
1z

r
1

<<  

Differentiation  ( ) ( )
dz

zdXznnx −↔    same ROC 

Example 2: 

Determine x(n) if X(z) = log (1+az-1) and |z| > |α| .  
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Convolution 

( ) ( )nxnx 21 *                      ( ) ( )zXzX 21 ⋅  

ROC is at least the intersection of that for X1(z) and X2(z). 

Correlation 

( )l21xxr                   ( ) ( )1
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−⋅ zXzX remember that ( ) ( ) ( )lll −= 2121 * xxr xx  

x*(n) ↔ x*(z*) 
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Time Multiplication 

( ) ( )nxnx 21 ⋅      Z            ? 
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Parseval's Theorem 
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It is like evaluating ( ) ( ){ }nxnxZ *
21  at z = 1 circle. 

Initial Value Theorem 

If x(n) is causal, )(lim)0( zXx z ∞→=  

Proof:  ( ) ( ) ( ) ( ) ( ) ...21 21 +++== −−
∞

−∑ zxzxoxznxzX
o
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if z → ∞ z-n → o therefore,  )(lim)0( zXx z ∞→= . 

Example: 

Using Z-transform properties, find X(z) of the following signal. 
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Now, lets use MATLAB to see if we’ve computed correctly.  

b = [0, 0, 0, 0.25, - 0.5, 0.0625]; 

a = [1, -1, 0.75, -0.25, 0.1625]; 

n = 0:  20             % checking the fist 21 samples of x(n)  

delta = [n =0];       % creating δ(n) 

x = filter (b, a, delta), 

plot (n, x), hold 

x = [zeros (1, 2)  n.* (0.5.∧n) * cos(pi * n/3)];  % creating the original signal   

n1 = 0:22; 

plot (n1, x, ‘r’) 

 

Rational Z-Transforms 
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It has M finite zeros at z1, z2, …, zM and N finite poles at p1, p2, …., pN as well as N – M zeros or 

M – N poles at origin and a possible zero/pole at ∞.  Depending on the location of the poles, the 

signal has different behaviors.  Read Section 3.3.2. 

 

The System Function of a LTI System 

Y(z) = H(z) ⋅ X(z) H(z) is called the system-function.  A system in general can be presented 

by a difference equation: 
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                                       ( ) ( )
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, where   a0 = 1 

Special Cases: 

If ak = 0 for 1 < k < N, then ( ) kM
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1 , which is an all-zeros system. 

The system has M trivial poles at the origin. Such a system has a finite duration impulse response 

and therefore is called FIR system. 

On the other hand, if bk = 0 for Mk ≤≤1  then ( ) 1,
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This system is an all-pole system (has N trivial zeros at origin) and therefore, has an infinite 

duration impulse response and thus is called IIR system.  A pole-zero system is still IIR because 

of the poles. 

 

The Inverse of Z Transform 
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By multiplying both sides of the above formula by zn-1 and integrating both sides over a closed 

contour within ROC of X(z), which encloses the origin, we have: 
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Since the series converges on this contour, we can interchange Σ and ∫ .  Then 
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  Cauchy Integral Theorem 
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Let zo = o. Then, f(z) = zn. If n is positive the antiderivitive 
1

1

+

+

n
zn

 is analytic every where and 

therefore, its contour integral is zero. But only for f(z) = z-1 it doesn’t have an antiderivitive even 

in a punctured plane.  For 2n −≤ , it is analytic in a punctured plane with origin deleted.  

Remember that if f is analytic in a simply connected domain, D, and Γ is any loop (close 

contour) in D, then 0)( =∫
Γ

dzzf because in a simply connected domain any loop can be shrunk 

to a point. Therefore, the integral of a continuous function over a shrinking loop converges to 

zero.  

 


