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Lecture 4

Properties of ROC

1) ROCisaring o<n <|z|<r2Soo

2) The Fourier Transform of x(n) converges if and only if ROC of X(z) includes the unit circle.

(Remember, z = r¢/” and if |z| = I then » = 1 and then X(z)= X(ej”’): +Z.Ox(n)e*j“”’ =
Fourier Transform of x(n). So, if X(z) convergence region includes the unit circle, then
X(¢*)=X(w) exists.)

3) ROC cannot contain any poles.

4) If x(n) is finite, then ROC is the entire plane except z = o/

5) Ifx(n) is right-sided (i.e., x(n) = o for n < N;, < o) ROC is the exterior of the largest pole.

6) If x(n) is the left-sided (i.e. x(n) = o for n > N, > -00) then ROC is the innermost ring of the
smallest pole.

7) If x(n) is two-sided, ROC consists of a ring in z plane, bounded on the interior and exterior by
a pole and not containing any pole.

8) ROC must be a connected region.

Properties of the Z-Transform

Time Shifting: xn—k) _ Z 7* X(z)
Linearity: ax;(n) + bx,(n) VAR aXj (z) + bX; (z)
But we cannot say ROC = ROC; + ROC,
Example 1:
xamp x(n)

I 0<n<N-1
x(n)= ! !

0 else I I I I I

lo N-I
Direct Method:
N-I1
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-n N

The function 1_2_1 = NZ_I -1
-z z (z—l)

because it is defined to be / at z = 1. Therefore, ROC = the entire plane except z = 0.

has two poles at 0 and /, but z = [ is not a pole for X(z)

Now using Z-Transform properties:

x(n) = u(n) —u(mn— N)

X(Z)z (I—Z_N)U(Z)I(I—Z_N) 1

1-z

1

and ROC of this one is |z| > / while that is different from ROC found earlier.
So, if the linear combination of several signals has finite duration, the ROC of its z-transform is

exclusively dictated by the finite duration of this signal and not by the ROC of the individual

transforms.
Scaling a”x(n)(—) X(ij ROC: |a|r; <|z| <|a| r:
a

. 4 1 1

Time-Reversal x(-n)e X (z ) ROC: —< |Z| <—
" 7
Differentiation nx(n) <> —z d);(z) same ROC
yA

Example 2:

Determine x(n) if X(z) = log (I+az") and |z| > |qf] .
dX(z) -—az” dX(z)  az 1

-1
= = -z = =az
dz 1+az™ dz l+az™ L — i— az™ J

-1

a)uln) S {ﬂ_la_ﬂ - zz{ﬂ_aT)} (e a) uln—1) = ()

N x(n):(—l)"_l%nu(n—l)

Convolution

xl(n)* xz(n) «Z 5 Xl(z)~ Xz(z)

ROC is at least the intersection of that for X;(z) and X,(z).

Correlation

roo(0)<—2—> X,(2)- X, (271 ) remember that 7, ,(¢) = x,(£)*x,(~¢)

x*(n) <> x*(z*)



Time Multiplication

x,(n)- x,(n) Z 7

_ *ﬁx] (), ()" = i’ii@xl (v)v”‘ldv} ()

S s ()’ (n) = —— § X, (), (Lj Ly

It is like evaluating Z {xl } tz = [ circle.

Initial Value Theorem

If x(n) is causal, x(0)=1lim_, X (z)

o0

Proof: X(z)= Zx(n)z‘" =x(0)+x(1)z" +x(2)z +...

ifz— o0 z" — o therefore, x(0)=1lim__ X(z).

Example:

Using Z-transform properties, find X(z) of the following signal.

x{n) = (1=2)0.5" ZCOSL) (n— 2)} (n-2)
X(z)= Z_ZZ{n(O.S)" cos%}u(n)}

_ {_ Z%Z{[(o.s)” cos%}u(n)ﬂ

2100.5) cos ™ u(n)\ = 1—(0.5%573[)2_1
{057 cos o)}

1- 2(0.5 cosZ]z‘1 +0.25z7  From Table on page 174

_ 1-0.2577 ,
1-0.25z7"+0.25z72°

Z| >0.5
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X(Z)=—z-li{ 1-0.5z" }

dz [1-0.5z7"+0.25z

0.25z7 = 0.5z +0.0625z7° _
X(Z) = ] ) 3 40
1-z7 +0.75z7" - 0.25z" + 0.0625z

z| > 0.5

Now, lets use MATLAB to see if we’ve computed correctly.

b=10, 0,0, 0.25, - 0.5, 0.0625];

a=[1,-1,0.75,-0.25, 0.1625];

n=0: 20 % checking the fist 21 samples of x(n)
delta = [n =0]; % creating o(n)

x = filter (b, a, delta),

plot (n, x), hold

x = [zeros (1, 2) n.* (0.5.”n) * cos(pi * n/3)]; % creating the original signal

nl =0:22;

plot (nl, x, ‘r’)

Rational Z-Transforms

M . o
Zbkz b H(Z — Zk)
X(z)=%£20 if a, and b, =0, then we can rewrite itas: X(z)=-Cz""V &l =
_ a
>a,z ¢ 0 IEII(Z ~ P )
k=0 =
It has M finite zeros at z;, z,, ..., zyr and N finite poles at p;, pa, ...., py as well as N — M zeros or

M — N poles at origin and a possible zero/pole at co. Depending on the location of the poles, the

signal has different behaviors. Read Section 3.3.2.

The System Function of a LTI System

Y(z) = H(z) - X(z) H(z) is called the system-function. A system in general can be presented

by a difference equation:

)= -3 ayn k) + bl k)

Y(z)= —kzji; a,z"Y(z)+ g:)bkz_k)((z)
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M M
bzt Ybpt
H(z)= () =t = £20 , where ayp=1
X(Z) 1+ az* Yaz*
=1 k=0

Special Cases:

M M
Ifay = 0 for | < k<N, then H(z)= bzt = LMZbkzM"k , which is an all-zeros system.
k=0 Z k

Il
f=}

The system has M trivial poles at the origin. Such a system has a finite duration impulse response

and therefore is called FIR system.
b, byz"

= N
1+>az* Yaz'*
K=0

This system is an all-pole system (has N trivial zeros at origin) and therefore, has an infinite

On the other hand, if b, = 0 for 1<k < M then H(z)=

,a, =1.

duration impulse response and thus is called IIR system. A pole-zero system is still IR because

of the poles.

The Inverse of Z Transform

~+00

k=—0

By multiplying both sides of the above formula by z and integrating both sides over a closed
contour within ROC of X(z), which encloses the origin, we have:

§X(z)z"‘1dz = ig ix(n)z"_l_kdz

¢ k=—x

Since the series converges on this contour, we can interchange Yand § . Then

ifX (2)z"'dz = i x(k){) z"*'dz  Cauchy Integral Theorem

k=—0 ¢
—
_2m n=k
10 n#k

x(n)= L x(z)z"dz
27,

n (] n+-1
One of Caushy Theorems states ff(z ~z,) dz= {

c

25 n=-1
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n+l

Let z, = o. Then, fiz) = Z". If n is positive the antiderivitive

is analytic every where and
n+1

therefore, its contour integral is zero. But only for f{z) = z” it doesn’t have an antiderivitive even
in a punctured plane. For n <—2, it is analytic in a punctured plane with origin deleted.

Remember that if f is analytic in a simply connected domain, D, and T" is any loop (close

contour) in D, then j f(z)dz = 0 because in a simply connected domain any loop can be shrunk
r

to a point. Therefore, the integral of a continuous function over a shrinking loop converges to

Z€10.



