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Sections 4.4.5 and 4.2.6 

Relationship of Z -Transform and Fourier Transform 
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Therefore, if z = ejω is not within ROC, then X(ω) doesn’t exist.  There are cases that X(z) exists 

such as anu(n), |a| > 1, because we can find an r such that ( ) ∞<∑
+∞

∞−

−nrnx , but its X(ω) doesn’t 

exist because Σ |x(n)| is not finite when |a| >1.  Note that in this example, ROC doesn’t include z 

= 1 since ROC will be |z| > r > |a| >1. 

On the other hand, there are cases that X(ω) exists on a weaker condition that the signal’s energy 

is finite like ( )
n

nnx c

π
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=  but it doesn’t have a X(z). Therefore, if X(z) exists and if its ROC 

includes unit circle, then X(ω) exists too, while the other side around is not true. 

 

If the system function, H(z), converges on the unit circle, we can obtain the frequency response 

of the system by evaluating H(z) on the unit circle.  
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complex. 

Power Spectrum is defined as: |H(ω)|2 = H(ω) ⋅ H*(ω) 



 44

( )
( )

( )

( )

( )∏

∏

∏

∏

=

=

=

=

−

−
=






≡

−

−
= N

k
k

M

k
k

oN

k

j
k

M

k

j
k

o

zp

zz
b

z
H

ep

ez
bH

1

*

1

*

*
*

1

*

1

*

*

1

1
1

1

1

ω

ω

ω   when h(n) is real, then complex zk and pk 

occur in complex-conjugate pairs.  Then ( )1
*

* 1 −=





 zH

z
H  or equivalently H*(ω) = H(-ω). 

LTI Systems as Frequency Selective Filters 

H(ω) acts as a weighting function or a spectral shaping function as Y(ω) = H(ω)⋅X(ω).  From this 

point of view, H(ω) is a filter. An ideal filter has a constant gain in pass-band and is zero in stop-

band and also has a linear phase response.  ( ) 0nωωθ −=  -linear characteristics within pass-band. 

( )
ω
ωθτ

d
d

g −=  is called the “group delay” of the filter.  ( )ωτ g  is the time delay that a signal 

component of frequency ω, undergoes as it passes from the input to the output of the system.  

Obviously when ( )ωτ g = constant, then all the components have the same delay. 

An example of ideal low-pass filter is: 

 

 

 

 

 

Therefore, ( )
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=  but is not a casual signal and is not absolutely summable and is 

also unstable.  However, its frequency response can be very closely approximated by some 

realizable filter. You have seen how the location of poles and zeros changes the frequency 

response.  Now lets have a graphical view of their location and type of filter.      
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1)  If a zero is on the unit circle at ko zp=ω , then ⇒== 0
okV ωω   |H(ωo)| = 0.   

2) If a pole is on the unit circle at ko pp=ω , then ( ) ∞=⇒== ok HU
o

ωωω 0 . 

From 1 and 2 it is clear that the presence of a zero close to the unit circle, makes |H(ω)| to be 

small at the frequencies close to that point and on the other hand, the presence of a pole close to 

the unit circle, causes |H(ω)| to be large at the frequencies close to that point. 

Lets look at ( ) 0
1

1
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= − zap
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azH .  So if a is real ( )01 =pp  and close to unit 

circle, then |H(ω)| will be maximum at zero frequencies.  Now if you add a zero on the unit 

circle, but with ω -π, it also attenuates the |H(ω)| more at high frequencies.  Therefore, we can 

say what kind of filter it is by just looking at zero-poles locations. 
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Example of a Band-Pass Filter 

Design a 2-pole band-pass filter with center frequency 
2
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To determine the value r, we should use the corner frequency or the 3db frequency. 
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Converting LP to HP Filters 

( ) ( )πωω −= LPHp HH  → ( ) ( ) ( ) ( )nhnhenh LP
n

LP
nj

HP 1−== π  

All-Pass Filters 

If |H(ω)| = 1 for o < ω < π ⇒ H(ω) is an all-pass system like a delay system.  H(z) = z-k.  In an 

all-pass system, if z0 is a pole, then
0

1
z

is a zero.  Its main application is in phase equalizer to 

compensate for poor phase characteristics to produce an overall linear phase response. 

Read all of Section 4.5. 

 

Invertibility of LIT Systems 
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( )zB
zAzH =2  meaning that the zeros of H1(z) are the poles of H2(z).  Is 

every system invertible? 

If an invertible system cannot be expressed by z-transform, we may find the inverse at the 

system by convolution of the two h1(n) and h2(n). 
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1 .  You can prove these easily by expanding the 

convolution sum. 

This method does not work if h1(0) = 0 but this can be easily resolved by introducing a delay. 

 

Minimum Phase – Maximum Phase Systems 

Consider these two systems:
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Both are all-zeros systems. 

  H1(z) H2(z) 
x(n) x(n)y(n) 
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You can plot and check these with 
[H, W] = freqz(b,a,1024,’whole’)
Then plot (w, angle(H)) 
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As ω goes from 0 →π, the phase change of ( )ωθ1  is zero but for ( )ωθ2  is π.  Therefore H1 has 

the minimum phase while H2 has the aximum phase charge.  So a Min-Phase system has zeros 

all inside the unit circle. On the other hand, all zeros of a Max-Phase system are outside the unit 

circle.  Min-phase ≡ Minimum delay. 

Showing Minimum Phase Graphically: 
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=−= −11  z1 = a, P1 = 0 

Case 1:  |a| < 1  p  H(ω) = θ (ω) - ω 

 

       In this case, if ω changes from zero to π, 

       ( )ωHp  changes from zero to zero. 

       At ( ) ( ) 0000 =−== θωω Hp  

       At ( ) ( ) 0=−== ππθωπω Hp  

       → Net change = o 

       → Minimum Phase System 

Case II:  |a|>1 

 

       At ( ) ππωω =−== 00 Hp  

       At ( ) 0=−== ππωπω Hp  

Therefore, in this case, net charge = π and 

the system is therefore, a Max-Phase system. 

 

 

So in general, if a system has M zeros outside the unit circle, its net phase change will be 

M.π over the range (0, π), while the net phase change for the zeros or poles inside the unit circle 

is zero. 

 

Phase Compensation 

Any casual and stable system can be decomposed to a Min-Phase system cascaded with an all-

pass system. 
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We need to choose the appropriate Hap to reflect the zero that is outside the unit circle to inside.  

So Hap should have a zero at z1 = -3 and since it is an all-pass system, it must have a pole at 
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Another Example 
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Verify these with MATLAB 

 

Min-Phase System Properties 

1.  Min-Phase System has the smallest group delay. 

     Proof:  H(z) = Hmin (z) . Hap (z) 

        τg(ω) = τgmin (ω) + τgap(ω) 

 Since ( ) ogap ≥ωτ  for ( ) ( )ωτωτπω minggo ≥⇒≤≤  

2.  The Min-Phase System has the largest partial energy.  Partial Energy of a system is defined 

as ( ) ( )
2

∑
=

=
n
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Note that Hap(z) in 
these cases is also a 
Max-Phase System 
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 It can be shown that among all systems having the same |H(ω)| and same total energy 

( ) ( )
2

∑
∞

=

=∞
ok

khE ,  the Min-Phase System has the largest partial energy.  In particular, it can be 

also concluded that ( ) ( )00 hhMP ≥ . 

Use initial value theorem and prove this as assignment. Look also to following problems in 

Chapter 4: 6(a,c), 8, 28, 30, 51, 59 and 100.  


