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Lecture 6- Chapter 4 

Frequency Analysis of Signals and Systems 

                             Continuous Signals and Discrete-Time Signals 

 

 

                          Periodic          Aperiodic 

Starting with periodic CT signals: 

Recall that a linear combination of harmonically related complex exponentials of the form 

( ) tkFj

k
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= is a periodic signal with fundamental period 
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= .  In order to find Ck, 

multiply both sides by Fot2je lπ−  and integrate over one period: 
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An important issue is that whether kFotj

k
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∑
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 representation is equal to x(t) for every moment 

of t. The Dirichlet conditions guarantee that this series is equal to x(t) except at the values of t for 

which x(t) is discontinuous.  At those values of t, the series converges to the midpoint (average 

value) of the discontinuity. 

Dirichlet conditions are: 

1) x(t) has a finite number of discontinuity in any period. 

2) x(t) has a finite number of maxima and minima during each period     sufficient but not  

3) x(t) is absolutely integrable in any period:                                             necessary 

    ( ) ∞<∫Tp tx  

A weaker condition is that signal's energy in one period should be finite: ( ) ∞<∫ dttxTp
2  
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Power Density Spectrum of Periodic Signals 

A periodic signal has infinite energy but finite average power. 

Parseval’s Theorem: 
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If x(t) is real then PSDCCCC kkkk ⇒=→= −

2*2*  is an even function in frequency and the 

phase is an odd function. 

Example: 
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Now if 
pT

τ  decreases ( ),∞→pT  then Ck → 0, which means the signal becomes aperiodic → 

average power becomes zero. 

 

CT Aperiodic Signals 
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Aperiodic signals are energy signals. 
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Energy Density Spectrum:  Sxx(F) = |X(F)|2 

A couple of points: 

1) Remember that from only ESD or PSD we cannot reconstruct x(t) because phase information 

is lost. 

2)  Ck for xp(t) is just samples of X(F) 
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DT Frequency Analysis 

First consider a periodic DT signal x(n) = x(n + N) 
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Multiply both sides by 
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e
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 and sum over one period. 
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*DTFS is periodic like Periodic DT* 

Ck+N = Ck. Therefore, the spectrum of a periodic DT, x(n), is also periodic with period N. 
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Example   

Find DTFS of the following signals: 
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For this case, we can directly write it is a sum of exponentials. 
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The smallest common denominator 
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Fourier Transform for Aperiodic D.T. Signals 
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(recall that for C.T. signals it was over ∑
+∞

∞−
 and here is over 2π which means that X(ω) is 

periodic).  

Two Basic Differences Between CTFT and DTFT: 

1) X(ω) ≡ X(ejω) is periodic with period 2π 
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2) Since X(ω) is periodic, (in fact a it is a periodic C.T. signal), then it has a Fourier Series 

and in fact x(n) are the coefficients of that Fourier Series. 

Before visiting a famous example, let’s review the concept of convergence. 

If we have a limited observation, we will have the truncation effect, and the famous theory of the 

Gibbs.  Let ( ) ( ) nj
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to X(ω) as ∞→N .  This convergence is guaranteed if x(n) is absolutely summable (3rd Dirichlet 

condition). 
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somehow band limited and hence, the uniform convergence. 

However, this is a sufficient condition.  If x(n) is not absolutely summable but square summable 

(finite energy) then X(ω) can exist. 

If ( ) ∞<= ∑
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x nxE , there is not a uniform convergence but there is a mean-square 

convergence. 
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Meaning the energy of error goes to zero but not necessarily the error itself. 

 

 

 

 

 

 

 

 

 

The example of this particular case is the sinc function. 
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Section 4.2.12 

There are two time-domain characteristics that determine the type of signal spectrum and they 

are: Periodicity and Continuity 

        Signals  

 

                       Continuous        Discrete-Time 

 

 

 

 

 

 

** Periodicity with period α in one domain automatically implies discretion with spacing α
1  in 

the other domain. 

Properties of the Fourier Transform for Discrete-Time Signals 

1.  Real signals – if x(n) is real, the X*(ω) = X(-ω) 

     Spectrum magnitude:  ( ) ( )ωω −= XX  →even function 

     Spectrum phase ( ) ( ) →−=− ωω XX pp odd function. 

2.  Real and even x(n)          → Real and Even X(ω) 

3.  Real and odd x(n)            → Imaginary and odd X(ω) 

4.  Imaginary and odd x(n)   → Real and odd X(ω) 

5.  Imaginary and even x(n) → Imaginary and even X(ω) 

6.  Linearity a1x1(n) + bx2(n)   F   aX1(ω) +bX2(ω) 

7.  Time-Shifting x(n)     F   X(ω) 

                            x(n-k)     F   e-jωk X(ω) 

  Aperiodic  
     & 
  Continuous  
  Spectrum 

Periodic Periodic Aperiodic Aperiodic 
 Aperiodic 
    & 
 Discrete  
 Spectrum 

  Periodic 
    & 
 Continuous 
 Spectrum 

  Periodic  
     & 
  Discrete  
  Spectrum 
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8.  Time-Reversal x(n)     F   X(ω) 

                             x(-n)     F   X(-ω)  Therefore, FT of an even function is an even function too. 

9.  Convolution:  x1(n) * x2(n)      F   X1(ω).X2(ω) 
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10. Correlation Theorem:  ( )nr
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       Now if x(n) is real, then X*(ω) =X(-ω) 
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       Energy Spectral Density 

11.  Frequency Shifting 

                            ejωon      F      X(ω -ωo) 

 

 

12  Modulation Theorem 

Cross-Energy 
Density Spectrum 
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13.  Parseval Theorem 
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14.  Windowing 
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15.  Differentiation in Frequency Domain 
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Skipping to Section 4.4.8 

Correlation Function and Power spectra for Random Input Signals 

When the input signal is random, then we have to consider statistical moments of input and 

output.  So here is a bit of introduction about “Stationary Random Process”.  Starting with the 

Definition of Stationary Signals: 

If X(t) is a random process with a point Probability Density Function (PDF), 

( ) ( )nxxxxPxP tttt ,...,,, 31 2
=  for n random variables.  ( ) ( ) nIii itxtX ,...2,1,≡  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the joint probability of ( ) ( ) τ+= 11 ,.........,,, 111
t

n
t

n xxPxxxP  for all t1 and τ then the random 

process X(t) is stationary in strict sense.  In other words, statistical properties of a stationary 

random process is time-invariant, meaning that its mean and variance and other moments are 

time invariant. 

 

One Observation 
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Statistical (ensemble) Average 

                                                   ( ) ( )
iiii tttt dxxPxxE ∫

+∞

∞−

=  

If we don’t have P(xti) but have many observations, then ( ) ( )1111 ...1
21

t
N

ttt xxx
N

xE +++= , which of 

a stationary process it is equal to E(xti) for any ti. 

Also autocorrelation function: 

                                            
( ) ( )

[ ]21

21212121 ,,

tt

tttttttt
xx

xxE

dxdxxxPxxxx

⋅=

= ∫ ∫
+

−

∞

∞

γ
 

If this xxγ  depends only on the time difference t1 – t2 = τ, then ( ) [ ],, 11 ττγ += ttxx xxE which is the 

case for stationary process.  If a process has two features: 

1) Its γxx depends only on time difference, τ, and 

2)  E(xt1) = E(xt2) = E(xti) 

then the process is said to be stationary in “wide sense”. 

Now if all statistical averages can be obtained by one single realization (or one sample set), then 

the process is also “Ergodic” meaning Ensemble average ≡ time average. 

                                        ( )nx xE=µ  and ( )∑
−

=

=
1

2
1 N

on
nx

N
µ)  

xµ)  is an estimate of µx.  It will be said it is an unbiased estimate if ( ) xxE µµ =) .  Also, it is a 
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Therefore, time average → ensemble average. 
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Now back to systems: 

                                                      x(n)→             → y(n) h(n) 
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The autocorrelation sequence: 
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Special Form:  when x(n) is a white noise, then ( ) ( )mm xxx δσγ 2=  and ( )02
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by getting the Fourier transform in general: 
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