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Linear Prediction Filters

(Chapter 11)

The term “model” is used to describe the hidden laws that are supposed to govern a physical

data.  The representation of a stochastic process by a model dates back to an idea by Yule (1927).

The idea is that a time-series x(n) consisting of highly correlated observations may be generated

by applying a series of statistically in-depth “shocks” (impulses) to a linear filter.  The “shocks”

or impulses are random variables drawn from a fixed distribution that is normally Gaussian with

zero mean and constant variance.  Such a series is a pure random process and is called “White

Gaussian Noise”, and it satisfies:

E{w(n)} = 0 for all n
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where w
2σ  is the variance of the process.

In general, the time-domain of the linear stochastic model may be described as the following:

Present values of + linear combination of past           = linear combination
the model output values of the model output    of present and past values of input
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There are three popular types of Stochastic Models:

1)  Autoregressive (AR) Model, in which no past values of input are used.  In other words, the

output is defined based on the present value of input and a linear combination of past values

of output. (Note that here, w(n) is the input and x(n) is the output of the system model.)
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(Note that here, w(n) is the input and x(n) is the output of the system model.)

2)  Moving Average (MA) Model, in which no past values of output are used.  In other words, the

output is defined based on present and past values of the input.
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3)  Mixed ARMA Model
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Notes:

1. An AR Model is equivalent to an LTI System:
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AR-process generator is an all-pole filter.

2. MA model is equivalent to LTI system:
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This is an all-zero system. A solution of particular interest for the coefficients of this filter is a

Min-Phase Filter.  Then, equivalently we can represent the system by its inverse:

  where ( )zHMA

1
 is an all-pole filter.

This filter is called “whitening” filter and y(n) is called the “innovation process”.

Wold Decompostion

In 1938, Wold proved a fundamental theorem, which states that any stationary discrete-time

stochastic process may be decomposed into the sum of a general linear process and  predictable

process, with these two being uncorrelated with each other.  More precisely, Wold proved the

following:

Theorem:  Any stationary discrete-time stochastic process x(n) may be expressed as

( ) ( ) ( )nsnunx +=  where

1)  s(n) and u(n) are uncorrelated;

2)  u(n) is a general linear process presented by the MA model:
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3)  s(n) is a predictable process; that is, the process can be predicted from its own past values

with zero prediction variance error.

The above is known as “Wold Decompostion Theorem”.  According to Equation (1), u(n) may

be generated by feeding an all-zeros filter with the white noise w(n).  The zeros of this filter

transfer function are the roots at the equation: ( ) ozbzB k
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becomes min-phase, then we can also produce u(n) by an all-pole filter and therefore by an AR

model.  The basic difference between MA and AR models is that B(z) operates on the input w(n)

in the MA model, whereas the B-1(z) operates on the output u(n) of the AR model.

Now lets get back to the ARMA model and try to find the model parameters.
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.  Multiply both sides by x*(n-m) and take the

expected value.  Then:
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, Non linear equations!

In the case of an AR model, it simplifies to:
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This can be written in Matrix form as:
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