 CS2308 SYSTEM SOFTWARE LAB MANUAL

LIST OF EXPERIMENTS
1. File Manipulation

2. Length of Macro

3. Implementation of Macro Processor

4. Implement a Symbol Table with functions to create, insert, modify, search & display.
5. Implementation of Text Editor

6. Implement Pass 1 of Two pass Assembler.

7. Implement pass 2 of Two pass Assembler

8. Implementation of Absolute Loader

9. Implementation of Relocation Loader

10. Implementation of Pass 1 of Direct-Linking Loader.

11. Implementation of Pass 2 of Direct-Linking Loader.

Ex No 1:

 FILE MANIPULATION
Aim: To write a C Program to create an employee database & to calculate net and gross salary using files.

Algorithm:

1. Enter name salary and deduction for employees in a text file.

2. In a C program create a structure for employees.

3. The members are name salary & deduction..

4. Open the files in read mode and get the values of salary and deduction

5. Calculate the net & gross salary

6. Close the file.

7. Open a new file in write mode and write the values of name,salary, deduction into it.

8. Print the database from the file and close it.

Ex No :2

LENGTH OF MACRO
Aim: To create a program in c implementing files to find the macrolength of a file.

Algorithm:

1. Create and open a file in read mode.

2. Type words between macro and mend.

3. Save the file and open it.

4. Read its content.

5. Increment the counter variable till the string comparison is not equal to zero.

6. Decrement the counter variable once it is equal to zero.

7. Print the counter variable which is number of lines.

8. End.
EX NO: 3

IMPLEMENTATION OF MACRO PROCESSOR

Aim:

To write a C program to implement macro expansion.

Algorithm:

1. Get the statement from input file.

2. From the line read, check if opcode is directive “MACRO” if so then number of macro “n” must be incremented.

3. Repeat step 1 and 2 until end of file is encountered.

4. Open ‘n’ number of files in write mode. These files will later hold body of ‘n’ macro respectively.

5. Rewind the input file pointer

6. If opcode is “macro”

7. Enter macro name present in operand file field into array named “m”.

8. Write line to expanded output file.

9. Enter lines in body of each macro into corresponding files already opened in file.

10. Write body of each macro to be expanded output file also until “MEND” is reached.

11. Else if OPCODE is “CALL” the line must be a macro invocation statement so the macro body is retrieved from the corresponding file.

12. Write all the remaining lines directly to expanded lines.

Ex No :4

 SYMBOL TABLE
Aim:
To Write a program in C to implement the symbol table.

Algorithm:

1. Create a structure having member variable and values.

2. Display the options and get choice from user.

3. If choice 1 call create.

4. If choice 2 call insert.

5. If choice 3 call modify

6. If choice 4 call search.

7. If choice 5 call display.

8. Exit.

9. Create()

9.1 Do till I less than 3.

9.2 Get input from the user for variables and values.

10 Insert()

10.1 Get number of records to insert.

10.1.1 Do till i is less than sum of I and number of recors to insert.

10.2 Get input for symbol name and value

11 Modify()

11.1 Get record or symbol name to modify.

11.2 If it is equal to any symbol name then print record found else print record not fund.

11.3 Get the value for corresponding symbol name.

12 Search()

12.1 Get the symbol name to modify.

12.2 If it is present in table then print record found else print record not found.

13 Display()

13.1 Do till k is less than total number of records.

13.2 Print the symbol names and values..

Ex No 5:
IMPLEMENTATION OF TEXT EDITOR

Aim:

To write a C Program fro text editor using files.

Algorithm:

1. Display options new, open and exit and get choice.
2. If choice 1 , call new.

3. If choice 2, call open.

4. else, exit.

5 new()

5.1 Get the file name and open it in write mode.

5.2 Get the text from the user to write it.

6 open()

6.1 Get the file name from user.

6.2 If present then open it in append mode.

6.3 Display options modify,search,back and get choice.

6.4 If choice 1, call modify.

6.5 If choice 2, call search.

6.6 Exit

7 modify()

7.1 Get the text to add the existing file.

7.2 Write it into the file and save the file.

8 Search()

8.1 Get the string to search.

8.2 If it is present then print word found.

8.3 Else, print word not found.

Ex No :6
Implement a Pass I of Two Pass Assembler
Aim: To write a C program to perform pass1 of a two assembler.

Algorithm:

1. Start the assembly process by processing the assembly program statements.

2. Location counter is initialized to the starting address if OPCODE = “START” else if it is initialized to 0.It is incremented depending upon the size of next consecutive instruction.

3. If there is any symbol present in lable field, location counter is entered into symbol table.The opcode table must be present in the memory during pass1.

4. Search the OPTAB.If it is found add 3 to locctr.

5. If not found in OPTAB, update the location value by checking whether the opcode is WORD,RESW,RESB or BYTE.

6. Write the program line with locctr value to intermediate file.

7. Read the next input line.

8. Steps3 to 7 is carried out till the end statement is reached.

9. Finally save the value of 1 locctr-starting address) and program length.

10. Stop.

EX NO:7
IMPLEMENT PASS-2 OF TWO PASS ASSEMBLER

Aim: To write a C-program to implement pass-2 assembler ie object code creation.

Algorithm:

1. Read first line from the intermediate file.
2. Check to see if the opcode from the first line read is “START”.If so then write label,opcode and operand field values of corresponding statement directly to final output files.
3. start the following processing for other lines in intermediate file if it is not a comment line until an “END” statement is reached.

4. Start writing labels LOCCTR opcode and operand fields of corresponding statement to the output file along with object code.The object code is found by assembling each statement opcode machine equivalent with label address.

5. If there is no symbol or label in the operand field, then the operand address is assigned as zero and it is assembled with object code of instruction

6. If OPCODE is BYTE,WORD,RESB etc are convert constants to oblect code close operand file and exit.

EX NO:8
 IMPLEMENTATION OF ABSOLUTE LOADER

Aim: To implement absolute loader using C-Program.

Algorithm:

1 Read loader record and filter the starting location and other details.

2 Read the first text record

3 If the object code is in character form convert it to internal hexadecimal representation.

4 Move object code to specified location in memory.

5 Write the starting location counter value of block of object code and corresponding internal hexadecimal representation to the output file.

6 Read next text record from the input file

7 Close all opened files and exit.

EX NO: 9 IMPLEMENTATION OF RELOCATION LOADER
Aim: To implement relocation loader using C- Program.

Algorithm:

1. Enter new starting location to which object code has to be relocated.

2. Read the content of the input file as strings one at a time in an array input.

3. Transfer the string read in array “input” into another array “output” until it is incremented.
4. Move consecutive next 3 strings into array “output”.

5. Cover current relocation bit associated with each text record to binary form.

6. Make necessary changes in corresponding words of object code and store the updated object code into array “output”.

7. Move object code for which corresponding relocation bit is not set directly to the array “output” from array “input” without any change.
8. Repeat step 2 to 8 until end record is encountered.

9. If the object code is in character from convert into internal hexadecimal representation .

10. Move object code to specified location in memory.

11. write starting LOCCTR value of block of object code and the corresponding internal hexadecimal representative to the output files.
EX NO: 10
IMPLEMENTATION OF PASS - 1 OF A DIRECT LINKING
 LOADER
Aim: To implement pass - 1 of a direct-linking loader

Algorithm:

1. Get the PROGADDR from the user

2. Initiate CSADDR with value of PROGADDR

3. Read header record from object program

4. Store the length of the control section in CSLTH

5. Search the ESTAB for control section name

(i) If found display an error message

(ii) Otherwise, insert the control section name with CSADDR into ESTAB
6. Read the next input record
7. If the record type is END goto step 10

8. If the record type is not D goto step 6

9. Search the ESTAB for symbol names given in D record.

(i) If found display an error message

(ii) Otherwise, insert the symbol into ESTAB with the sum of CSADDR and indicated address and goto step 6.

10. Add CSLTH to CSADDR.

11. If end of file is reached, Exit. Otherwise goto step 3.

EX NO: 11
IMPLEMENTATION OF PASS - 2 OF A DIRECT LINKING
 LOADER

Aim: To implement pass2 of direct linking loader using C program.
Algorithm:

1. Read the header record from object program.

2. Get the CSADDR for the correct control section from ESTAB.

3. Read next input record.

4. If the record type is END, go to step 8.

5. If the record type is ‘T’, place the object code in location which is sum of CSADDR and specified address.

6. If the record type is ‘M’ search the ESTAB for symbol table.

(i) If found add or subtract symbol value at location CSADDR + specified

Address.

(ii) Otherwise display error message.

7. Read next input record and go to step 4.

8. If end of file is reached,Exit.Otherwise go to step1.

