UNIT IV SEQUENTIAL CIRCUITS

	Introduction 

	
	
	Digital electronics is classified into combinational logic and sequential logic. Combinational logic output depends on the inputs levels, whereas sequential logic output depends on stored levels and also the input levels.
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	The memory elements are devices capable of storing binary info. The binary info stored in the memory elements at any given time defines the state of the sequential circuit. The input and the present state of the memory element determines the output. Memory elements next state is also a function of external inputs and present state. A sequential circuit is specified by a time sequence of inputs, outputs, and internal states.
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	There are two types of sequential circuits. Their classification depends on the timing of their signals:
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	· Synchronous sequential circuits 

· Asynchronous sequential circuits 
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	Asynchronous sequential circuit 

	
	
	This is a system whose outputs depend upon the order in which its input variables change and can be affected at any instant of time.
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	Gate-type asynchronous systems are basically combinational circuits with feedback paths. Because of the feedback among logic gates, the system may, at times, become unstable. Consequently they are not often used.
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	Synchronous sequential circuits 

	
	
	This type of system uses storage elements called flip-flops that are employed to change their binary value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges of the clock depending on the type of memory elements used in the circuit. Synchronization is achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout the system in such a way that the flip-flops are affected only with the arrival of the synchronization pulse. Synchronous sequential circuits that use clock pulses in the inputs are called clocked-sequential circuits. They are stable and their timing can easily be broken down into independent discrete steps, each of which is considered separately.
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	A clock signal is a periodic square wave that indefinitely switches from 0 to 1 and from 1 to 0 at fixed intervals. Clock cycle time or clock period: the time interval between two consecutive rising or falling edges of the clock.
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	Clock Frequency = 1 / clock cycle time (measured in cycles per second or Hz) 
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	Example:Clock cycle time = 10ns clock frequency = 100M

	Concept of Sequential Logic 

	
	
	A sequential circuit as seen in the last page, is combinational logic with some feedback to maintain its current value, like a memory cell. To understand the basics let's consider the basic feedback logic circuit below, which is a simple NOT gate whose output is connected to its input. The effect is that output oscillates between HIGH and LOW (i.e. 1 and 0). Oscillation frequency depends on gate delay and wire delay. Assuming a wire delay of 0 and a gate delay of 10ns, then oscillation frequency would be (on time + off time = 20ns) 50Mhz. 
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	The basic idea of having the feedback is to store the value or hold the value, but in the above circuit, output keeps toggling. We can overcome this problem with the circuit below, which is basically cascading two inverters, so that the feedback is in-phase, thus avoids toggling. The equivalent circuit is the same as having a buffer with its output connected to its input.
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	But there is a problem here too: each gate output value is stable, but what will it be? Or in other words buffer output can not be known. There is no way to tell. If we could know or set the value we would have a simple 1-bit storage/memory element.
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	The circuit below is the same as the inverters connected back to back with provision to set the state of each gate (NOR gate with both inputs shorted is like a inverter). I am not going to explain the operation, as it is clear from the truth table. S is called set and R is called Reset.
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	There still seems to be some problem with the above configuration, we can not control when the input should be sampled, in other words there is no enable signal to control when the input is sampled. Normally input enable signals can be of two types.
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	· Level Sensitive or ( LATCH) 

· Edge Sensitive or (Flip-Flop) 
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	Level Sensitive: The circuit below is a modification of the above one to have level sensitive enable input. Enable, when LOW, masks the input S and R. When HIGH, presents S and R to the sequential logic input (the above circuit two NOR Gates). Thus Enable, when HIGH, transfers input S and R to the sequential cell transparently, so this kind of sequential circuits are called transparent Latch. The memory element we get is an RS Latch with active high Enable.
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	Edge Sensitive: The circuit below is a cascade of two level sensitive memory elements, with a phase shift in the enable input between first memory element and second memory element. The first RS latch (i.e. the first memory element) will be enabled when CLK input is HIGH and the second RS latch will be enabled when CLK is LOW. The net effect is input RS is moved to Q and Q' when CLK changes state from HIGH to LOW, this HIGH to LOW transition is called falling edge. So the Edge Sensitive element we get is called negative edge RS flip-flop.
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	Now that we know the sequential circuits basics, let's look at each of them in detail in accordance to what is taught in colleges. You are always welcome to suggest if this can be written better in any way.

	Latches and Flip-Flops 

	
	
	There are two types types of sequential circuits.
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	· Asynchronous Circuits. 

· Synchronous Circuits. 

	 
	 
	[image: image38.png]

	
	
	As seen in last section, Latches and Flip-flops are one and the same with a slight variation: Latches have level sensitive control signal input and Flip-flops have edge sensitive control signal input. Flip-flops and latches which use this control signals are called synchronous circuits. So if they don't use clock inputs, then they are called asynchronous circuits.
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	RS Latch 

	
	
	RS latch have two inputs, S and R. S is called set and R is called reset. The S input is used to produce HIGH on Q ( i.e. store binary 1 in flip-flop). The R input is used to produce LOW on Q (i.e. store binary 0 in flip-flop). Q' is Q complementary output, so it always holds the opposite value of Q. The output of the S-R latch depends on current as well as previous inputs or state, and its state (value stored) can change as soon as its inputs change. The circuit and the truth table of RS latch is shown below. (This circuit is as we saw in the last page, but arranged to look beautiful :-) ).
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	The operation has to be analyzed with the 4 inputs combinations together with the 2 possible previous states.
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	· When S = 0 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So it is clear that when both S and R inputs are LOW, the output is retained as before the application of inputs. (i.e. there is no state change). 

· When S = 1 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. So in simple words when S is HIGH and R is LOW, output Q is HIGH. 

· When S = 0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after input is applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So in simple words when S is LOW and R is HIGH, output Q is LOW. 

· When S = 1 and R =1 : No matter what state Q and Q' are in, application of 1 at input of NOR gate always results in 0 at output of NOR gate, which results in both Q and Q' set to LOW (i.e. Q = Q'). LOW in both the outputs basically is wrong, so this case is invalid. 
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	The waveform below shows the operation of NOR gates based RS Latch.
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	It is possible to construct the RS latch using NAND gates (of course as seen in Logic gates section). The only difference is that NAND is NOR gate dual form (Did I say that in Logic gates section?). So in this case the R = 0 and S = 0 case becomes the invalid case. The circuit and Truth table of RS latch using NAND is shown below.
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	If you look closely, there is no control signal (i.e. no clock and no enable), so this kind of latches or flip-flops are called asynchronous logic elements. Since all the sequential circuits are built around the RS latch, we will concentrate on synchronous circuits and not on asynchronous circuits.

	RS Latch with Clock 

	
	
	We have seen this circuit earlier with two possible input configurations: one with level sensitive input and one with edge sensitive input. The circuit below shows the level sensitive RS latch. Control signal "Enable" E is used to gate the input S and R to the RS Latch. When Enable E is HIGH, both the AND gates act as buffers and thus R and S appears at the RS latch input and it functions like a normal RS latch. When Enable E is LOW, it drives LOW to both inputs of RS latch. As we saw in previous page, when both inputs of a NOR latch are low, values are retained (i.e. the output does not change).
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	Setup and Hold Time 

	
	
	For synchronous flip-flops, we have special requirements for the inputs with respect to clock signal input. They are
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	· Setup Time: Minimum time period during which data must be stable before the clock makes a valid transition. For example, for a posedge triggered flip-flop, with a setup time of 2 ns, Input Data (i.e. R and S in the case of RS flip-flop) should be stable for at least 2 ns before clock makes transition from 0 to 1. 

· Hold Time: Minimum time period during which data must be stable after the clock has made a valid transition. For example, for a posedge triggered flip-flop, with a hold time of 1 ns. Input Data (i.e. R and S in the case of RS flip-flop) should be stable for at least 1 ns after clock has made transition from 0 to 1. 
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	If data makes transition within this setup window and before the hold window, then the flip-flop output is not predictable, and flip-flop enters what is known as meta stable state. In this state flip-flop output oscillates between 0 and 1. It takes some time for the flip-flop to settle down. The whole process is called metastability. You could refer to tidbits section to know more information on this topic.
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	The waveform below shows input S (R is not shown), and CLK and output Q (Q' is not shown) for a SR posedge flip-flop. 
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	D Latch 

	
	
	The RS latch seen earlier contains ambiguous state; to eliminate this condition we can ensure that S and R are never equal. This is done by connecting S and R together with an inverter. Thus we have D Latch: the same as the RS latch, with the only difference that there is only one input, instead of two (R and S). This input is called D or Data input. D latch is called D transparent latch for the reasons explained earlier. Delay flip-flop or delay latch is another name used. Below is the truth table and circuit of D latch.
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	In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.
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	Below is the D latch waveform, which is similar to the RS latch one, but with R removed.
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	JK Latch 

	
	
	The ambiguous state output in the RS latch was eliminated in the D latch by joining the inputs with an inverter. But the D latch has a single input. JK latch is similar to RS latch in that it has 2 inputs J and K as shown figure below. The ambiguous state has been eliminated here: when both inputs are high, output toggles. The only difference we see here is output feedback to inputs, which is not there in the RS latch.
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	T Latch 

	
	
	When the two inputs of JK latch are shorted, a T Latch is formed. It is called T latch as, when input is held HIGH, output toggles.
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	JK Master Slave Flip-Flop 

	
	
	All sequential circuits that we have seen in the last few pages have a problem (All level sensitive sequential circuits have this problem). Before the enable input changes state from HIGH to LOW (assuming HIGH is ON and LOW is OFF state), if inputs changes, then another state transition occurs for the same enable pulse. This sort of multiple transition problem is called racing.
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	If we make the sequential element sensitive to edges, instead of levels, we can overcome this problem, as input is evaluated only during enable/clock edges.
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	In the figure above there are two latches, the first latch on the left is called master latch and the one on the right is called slave latch. Master latch is positively clocked and slave latch is negatively clocked.
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	Sequential Circuits Design 

	
	
	We saw in the combinational circuits section how to design a combinational circuit from the given problem. We convert the problem into a truth table, then draw K-map for the truth table, and then finally draw the gate level circuit for the problem. Similarly we have a flow for the sequential circuit design. The steps are given below.
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	· Draw state diagram. 

· Draw the state table (excitation table) for each output. 

· Draw the K-map for each output. 

· Draw the circuit. 
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	Looks like sequential circuit design flow is very much the same as for combinational circuit. 
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	State Diagram 

	
	
	The state diagram is constructed using all the states of the sequential circuit in question. It builds up the relationship between various states and also shows how inputs affect the states.
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	To ease the following of the tutorial, let's consider designing the 2 bit up counter (Binary counter is one which counts a binary sequence) using the T flip-flop.
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	Below is the state diagram of the 2-bit binary counter. 
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	State Table 

	
	
	The state table is the same as the excitation table of a flip-flop, i.e. what inputs need to be applied to get the required output. In other words this table gives the inputs required to produce the specific outputs. 
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	K-map 

	
	
	The K-map is the same as the combinational circuits K-map. Only difference: we draw K-map for the inputs i.e. T1 and T0 in the above table. From the table we deduct that we don't need to draw K-map for T0, as it is high for all the state combinations. But for T1 we need to draw the K-map as shown below, using SOP. 
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	Circuit 

	
	
	There is nothing special in drawing the circuit, it is the same as any circuit drawing from K-map output. Below is the circuit of 2-bit up counter using the T flip-flop. 
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Counters

In digital logic and computing, a counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. In practice, there are two types of counters:

· up counters which increase (increment) in value 

· down counters which decrease (decrement) in value 

Counters Types

In electronics, counters can be implemented quite easily using register-type circuits such as the flip-flop, and a wide variety of designs exist, e.g:

· Asynchronous (ripple) counters 

· Synchronous counters 

· Johnson counters 

· Decade counters 

· Up-Down counters 

· Ring counters 

Each is useful for different applications. Usually, counter circuits are digital in nature, and count in binary, or sometimes binary coded decimal. Many types of counter circuit are available as digital building blocks, for example a number of chips in the 4000 series implement different counters.
Asynchronous (ripple) counters
The simplest counter circuit is a single D-type flip flop, with its D (data) input fed from its own inverted output. This circuit can store one bit, and hence can count from zero to one before it overflows (starts over from 0). This counter will increment once for every clock cycle and takes two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency of the input clock. If this output is then used as the clock signal for a similarly arranged D flip flop (remembering to invert the output to the input), you will get another 1 bit counter that counts half as fast. Putting them together yields a two bit counter:

	cycle
	Q1
	Q0
	(Q1:Q0)dec

	0
	0
	0
	0

	1
	0
	1
	1

	2
	1
	0
	2

	3
	1
	1
	3

	4
	0
	0
	0


You can continue to add additional flip flops, always inverting the output to its own input, and using the output from the previous flip flop as the clock signal. The result is called a ripple counter, which can count to 2n-1 where n is the number of bits (flip flop stages) in the counter. Ripple counters suffer from unstable outputs as the overflows "ripple" from stage to stage, but they do find frequent application as dividers for clock signals, where the instantaneous count is unimportant, but the division ratio overall is. (To clarify this, a 1-bit counter is exactly equivalent to a divide by two circuit - the output frequency is exactly half that of the input when fed with a regular train of clock pulses).

Synchronous counters
Where a stable count value is important across several bits, which is the case in most counter systems, synchronous counters are used. These also use flip-flops, either the D-type or the more complex J-K type, but here, each stage is clocked simultaneously by a common clock signal. Logic gates between each stage of the circuit control data flow from stage to stage so that the desired count behavior is realized. Synchronous counters can be designed to count up or down, or both according to a direction input, and may be presetable via a set of parallel "jam" inputs. Most types of hardware-based counter are of this type.

A simple way of implementing the logic for each bit of an ascending counter (which is what is shown in the image to the right) is for each bit to toggle when all of the less significant bits are at a logic high state. For example, bit 1 toggles when bit 0 is logic high; bit 2 toggles when both bit 1 and bit 0 are logic high; bit 3 toggles when bit 2, bit 1 and bit 0 are all high; and so on.
Johnson counters
A Johnson counter is a special case of shift register, where the output from the last stage is inverted and fed back as input to the first stage. A pattern of bits equal in length to the shift register thus circulates indefinitely. These counters are sometimes called "walking ring" counters, and find specialist applications, including those similar to the decade counter, digital to analogue conversion, etc.
Decade counters
Decade counters are a kind of counter that counts in tens rather than having a binary representation. Each output will go high in turn, starting over after ten outputs have occurred. This type of circuit finds applications in multiplexers and demultiplexers, or wherever a scanning type of behaviour is useful. Similar counters with different numbers of outputs are also common.
Up-Down Counters
It is a combination of up counter and down counter, counting in straight binary sequence. There is an up-down selector. If this value is kept high, counter increments binary value and if the value is low, then counter starts decrementing the count. The Down counters are made by using the complemented output to act as the clock for the next flip-flop in the case of Asynchronous counters. An Up counter is constructed by linking the Q out of the J-K Flip flop and putting it into a Negative Edge Triggered Clock input. A Down Counter is constructed by taking the Q output and putting it into a Positive Edge Triggered input
Ring Counters
A ring counter is a counter that counts up and when it reaches the last number that is designed to count up to, it will reset itself back to the first number. For example, a ring counter that is designed using 3 JK Flip Flops will count starting from 001 to 010 to 100 and back to 001. It will repeat itself in a 'Ring' shape and thus the name Ring Counter is given.
Shift register
In digital circuits a shift register is a group of flip flops set up in a linear fashion which have their inputs and outputs connected together in such a way that the data is shifted down the line when the circuit is activated

Types of shift register
Shift registers can have a combination of serial and parallel inputs and outputs, including serial-in, parallel-out (SIPO) and parallel-in, serial-out (PISO) types. There are also types that have both serial and parallel input and types with serial and parallel output. There are also bi-directional shift registers which allow you to vary the direction of the shift register. The serial input and outputs of a register can also be connected together to create a circular shift register. One could also create multi-dimensional shift registers, which can perform more complex computation.
Serial-in, serial-out
Destructive readout
These are the simplest kind of shift register. The data string is presented at 'Data In', and is shifted right one stage each time 'Data Advance' is brought high. At each advance, the bit on the far left (i.e. 'Data In') is shifted into the first flip-flop's output. The bit on the far right (i.e. 'Data Out') is shifted out and lost.

The data are stored after each flip-flop on the 'Q' output, so there are four storage 'slots' available in this arrangement, hence it is a 4-Bit Register. To give an idea of the shifting pattern, imagine that the register holds 0000 (so all storage slots are empty). As 'Data In' presents 1,1,0,1,0,0,0,0 (in that order, with a pulse at 'Data Advance' each time. This is called clocking or strobing) to the register, this is the result. The left hand column corresponds to the left-most flip-flop's output pin, and so on.

So the serial output of the entire register is 11010000 (). As you can see if we were to continue to input data, we would get exactly what was put in, but offset by four 'Data Advance' cycles. This arrangement is the hardware equivalent of a queue. Also, at any time, the whole register can be set to zero by bringing the reset (R) pins high.This arrangement performs destructive readout - each datum is lost once it been shifted out of the right-most bit
Non-destructive readout
Non-destructive readout can be achieved using the configuration shown below. Another input line is added - the Read/Write Control. When this is high (i.e. write) then the shift register behaves as normal, advancing the input data one place for every clock cycle, and data can be lost from the end of the register. However, when the R/W control is set low (i.e. read), any data shifted out of the register at the right becomes the next input at the left, and is kept in the system. Therefore, as long as the R/W control is set low, no data can be lost from the system
Serial-in, parallel-out
This configuration allows conversion from serial to parallel format. Data are input serially, as described in the SISO section above. Once the data has been input, it may be either read off at each output simultaneously, or it can be shifted out and replaced.

Parallel-in, serial-out
This configuration has the data input on lines D1 through D4 in parallel format. To write the data to the register, the Write/Shift control line must be held LOW. To shift the data, the W/S control line is brought HIGH and the registers are clocked. The arrangement now acts as a SISO shift register, with D1 as the Data Input. However, as long as the number of clock cycles is not more than the length of the data-string, the Data Output, Q, will be the parallel data read off in order.

