DIGITAL ELECTRONICS

Advantages

The usual advantages of digital circuits when compared to analog circuits are:

· Digital systems interface well with computers and are easy to control with software. New features can often be added to a digital system without changing hardware. Often this can be done outside of the factory by updating the product's software. So, the product's design errors can be corrected after the product is in a customer's hands.

· Information storage can be easier in digital systems than in analog ones. The noise-immunity of digital systems permits data to be stored and retrieved without degradation. In an analog system, noise from aging and wear degrade the information stored. In a digital system, as long as the total noise is below a certain level, the information can be recovered perfectly.

 Robustness

One of the primary advantages of digital electronics is its robustness. Digital electronics are robust because if the noise is less than the noise margin then the system performs as if there were no noise at all. Therefore, digital signals can be regenerated to achieve lossless data transmission, within certain limits.

Analog signal transmission and processing, by contrast, always introduces noise.

Disadvantages

In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus producing more heat as well. In portable or battery-powered systems this can limit use of digital systems.

For example, battery-powered cellular telephones often use a low-power analog front-end to amplify and tune in the radio signals from the base station. However, a base station has grid power and can use power-hungry, but very flexible software radios. Such base stations can be easily reprogrammed to process the signals used in new cellular standards.

Digital circuits are sometimes more expensive, especially in small quantities.

The sensed world is analog, and signals from this world are analog quantities. For example, light, temperature, sound, electrical conductivity, electric and magnetic fields are analog. Most useful digital systems must translate from continuous analog signals to discrete digital signals. This causes quantization errors.

Quantization error can be reduced if the system stores enough digital data to represent the signal to the desired degree of fidelity. The Nyquist-Shannon sampling theorem provides an important guideline as to how much digital data is needed to accurately portray a given analog signal.

UNIT I -NUMBER SYSTEMS
	Numbering System

	
	
	Many number systems are in use in digital technology. The most common are the decimal, binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is a tool that we use every day. Examining some of its characteristics will help us to better understand the other systems. In the next few pages we shall introduce four numerical representation systems that are used in the digital system. There are other systems, which we will look at briefly.

	
	
	· Decimal

· Binary

· Octal

· Hexadecimal

	
	
	[image: image1.png]

	
	[image: image2.png]
	Decimal System

	
	
	The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The decimal system is also called the base-10 system because it has 10 digits.

	
	
	[image: image3.png]

	
	
	103
102
101
100
10-1
10-2
10-3
=1000

=100

=10

=1

.

=0.1

=0.01

=0.001

Most Significant Digit

Decimal point

Least Significant Digit

	
	
	[image: image4.png]

	
	
	Even though the decimal system has only 10 symbols, any number of any magnitude can be expressed by using our system of positional weighting.

	
	
	[image: image5.png]

	
	[image: image6.png]
	Decimal Examples

	
	
	[image: image7.png]

	
	
	· 3.1410

· 5210

· 102410

· 6400010

	
	
	[image: image8.png]

	
	[image: image9.png]
	Binary System

	
	
	In the binary system, there are only two symbols or possible digit values, 0 and 1. This base-2 system can be used to represent any quantity that can be represented in decimal or other base system.

	
	
	[image: image10.png]

	
	
	23
22
21
20
2-1
2-2
2-3
=8

=4

=2

=1

.

=0.5

=0.25

=0.125

Most Significant Digit

Binary point

Least Significant Digit

	
	
	[image: image11.png]

	
	[image: image12.png]
	Binary Counting

	
	
	The Binary counting sequence is shown in the table:

	
	
	[image: image13.png]

	
	
	23
22
21
20
Decimal
0

0

0

0

0

0

0

0

1

1

0

0

1

0

2

0

0

1

1

3

0

1

0

0

4

0

1

0

1

5

0

1

1

0

6

0

1

1

1

7

1

0

0

0

8

1

0

0

1

9

1

0

1

0

10

1

0

1

1

11

1

1

0

0

12

1

1

0

1

13

1

1

1

0

14

1

1

1

1

15

	
	
	[image: image14.png]

	
	
	

	
	
	[image: image15.png]

	
	[image: image16.png]
	Representing Binary Quantities

	
	
	In digital systems the information that is being processed is usually presented in binary form. Binary quantities can be represented by any device that has only two operating states or possible conditions. E.g.. a switch is only open or closed. We arbitrarily (as we define them) let an open switch represent binary 0 and a closed switch represent binary 1. Thus we can represent any binary number by using series of switches.

	
	
	[image: image17.png]

	
	[image: image18.png]
	Typical Voltage Assignment

	
	
	Binary 1: Any voltage between 2V to 5V

	
	
	Binary 0: Any voltage between 0V to 0.8V

	
	
	Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and TTL Logic, this may cause error in a digital circuit. Today's digital circuits works at 1.8 volts, so this statement may not hold true for all logic circuits.

	
	
	[image: image19.png]

	
	
	[image: image20.png]

	
	
	[image: image21.png]

	
	
	We can see another significant difference between digital and analog systems. In digital systems, the exact voltage value is not important; eg, a voltage of 3.6V means the same as a voltage of 4.3V. In analog systems, the exact voltage value is important.

	
	
	[image: image22.png]

	
	
	The binary number system is the most important one in digital systems, but several others are also important. The decimal system is important because it is universally used to represent quantities outside a digital system. This means that there will be situations where decimal values have to be converted to binary values before they are entered into the digital system.

	
	
	[image: image23.png]

	
	
	In additional to binary and decimal, two other number systems find wide-spread applications in digital systems. The octal (base-8) and hexadecimal (base-16) number systems are both used for the same purpose- to provide an efficient means for representing large binary system.

	
	
	[image: image24.png]

	
	[image: image25.png]
	Octal System

	
	
	The octal number system has a base of eight, meaning that it has eight possible digits: 0,1,2,3,4,5,6,7.

	
	
	[image: image26.png]

	
	
	83
82
81
80
8-1
8-2
8-3
=512

=64

=8

=1

.

=1/8

=1/64

=1/512

Most Significant Digit

Octal point

Least Significant Digit

	
	
	[image: image27.png]

	
	[image: image28.png]
	Octal to Decimal Conversion

	
	
	[image: image29.png]

	
	
	· 2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910

· 24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510

· 11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510

· 12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510

	
	
	[image: image30.png]

	
	[image: image31.png]
	Hexadecimal System

	
	
	The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

	
	
	[image: image32.png]

	
	
	163
162
161
160
16-1
16-2
16-3
=4096

=256

=16

=1

.

=1/16

=1/256

=1/4096

Most Significant Digit

Hexa Decimal point

Least Significant Digit

	
	
	[image: image33.png]

	
	[image: image34.png]
	Hexadecimal to Decimal Conversion

	
	
	[image: image35.png]

	
	
	· 24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510

· 11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510

· 12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510

	Code Conversion

	
	
	Converting from one code form to another code form is called code conversion, like converting from binary to decimal or converting from hexadecimal to decimal.

	
	
	[image: image36.png]

	
	[image: image37.png]
	Binary-To-Decimal Conversion

	
	
	Any binary number can be converted to its decimal equivalent simply by summing together the weights of the various positions in the binary number which contain a 1.

	
	
	[image: image38.png]

	
	
	Binary
Decimal
110112
24+23+01+21+20
=16+8+0+2+1

Result

2710

	
	
	[image: image39.png]

	
	
	and

	
	
	[image: image40.png]

	
	
	Binary
Decimal
101101012
27+06+25+24+03+22+01+20
=128+0+32+16+0+4+0+1

Result

18110

	
	
	[image: image41.png]

	
	
	You should have noticed that the method is to find the weights (i.e., powers of 2) for each bit position that contains a 1, and then to add them up.

	
	
	[image: image42.png]

	
	[image: image43.png]
	Decimal-To-Binary Conversion

	
	
	[image: image44.png]

	
	
	There are 2 methods:

	
	
	[image: image45.png]

	
	
	· Reverse of Binary-To-Decimal Method

· Repeat Division

	
	
	[image: image46.png]

	
	[image: image47.png]
	Reverse of Binary-To-Decimal Method

	
	
	[image: image48.png]

	
	
	Decimal
Binary
4510
=32 + 0 + 8 + 4 +0 + 1

=25+0+23+22+0+20
Result

=1011012

	
	
	[image: image49.png]

	
	
	[image: image50.png]

	
	[image: image51.png]
	Repeat Division-Convert decimal to binary

	
	
	This method uses repeated division by 2.

	
	
	[image: image52.png]

	
	
	Convert 2510 to binary

	
	
	[image: image53.png]

	
	
	Division
Remainder
Binary
25/2

= 12+ remainder of 1

1 (Least Significant Bit)

12/2

= 6 + remainder of 0

0

6/2

= 3 + remainder of 0

0

3/2

= 1 + remainder of 1

1

1/2

= 0 + remainder of 1

1 (Most Significant Bit)

Result

2510

= 110012

	
	
	[image: image54.png]

	
	
	The Flow chart for repeated-division method is as follows:

	
	
	[image: image55.png]

	
	
	[image: image56.png]

	
	
	[image: image57.png]

	
	
	

	
	
	[image: image58.png]

	
	[image: image59.png]
	Binary-To-Octal / Octal-To-Binary Conversion

	
	
	[image: image60.png]

	
	
	Octal Digit
0
1
2
3
4
5
6
7
Binary Equivalent

000

001

010

011

100

101

110

111

	
	
	[image: image61.png]

	
	
	Each Octal digit is represented by three binary digits.

	
	
	[image: image62.png]

	
	
	Example:

	
	
	100 111 0102 = (100) (111) (010)2 = 4 7 28

	
	
	[image: image63.png]

	
	[image: image64.png]
	Repeat Division-Convert decimal to octal

	
	
	[image: image65.png]

	
	
	This method uses repeated division by 8.

	
	
	[image: image66.png]

	
	
	Example: Convert 17710 to octal and binary

	
	
	[image: image67.png]

	
	
	Division
Result
Binary
177/8

= 22+ remainder of 1

1 (Least Significant Bit)

22/ 8

= 2 + remainder of 6

6

2 / 8

= 0 + remainder of 2

2 (Most Significant Bit)

Result

17710

= 2618
Binary

= 0101100012

	
	
	[image: image68.png]

	
	[image: image69.png]
	Hexadecimal to Decimal/Decimal to Hexadecimal Conversion

	
	
	[image: image70.png]

	
	
	Example:

	
	
	2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

	
	
	[image: image71.png]

	
	[image: image72.png]
	Repeat Division- Convert decimal to hexadecimal

	
	
	This method uses repeated division by 16.

	
	
	[image: image73.png]

	
	
	Example: convert 37810 to hexadecimal and binary:

	
	
	[image: image74.png]

	
	
	Division
Result
Hexadecimal
378/16

= 23+ remainder of 10

A (Least Significant Bit)23

23/16

= 1 + remainder of 7

7

1/16

= 0 + remainder of 1

1 (Most Significant Bit)

Result

37810

= 17A16
Binary

= 0001 0111 10102

	
	
	[image: image75.png]

	
	[image: image76.png]
	Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

	
	
	[image: image77.png]

	
	
	Hexadecimal Digit
0
1
2
3
4
5
6
7
Binary Equivalent

0000

0001

0010

0011

0100

0101

0110

0111

	
	
	[image: image78.png]

	
	
	Hexadecimal Digit
8
9
A
B
C
D
E
F
Binary Equivalent

1000

1001

1010

1011

1100

1101

1110

1111

	
	
	[image: image79.png]

	
	
	Each Hexadecimal digit is represented by four bits of binary digit.

	
	
	[image: image80.png]

	
	
	Example:

	
	
	[image: image81.png]

	
	
	1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

	
	
	[image: image82.png]

	
	[image: image83.png]
	Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion

	
	
	[image: image84.png]

	
	
	· Convert Octal (Hexadecimal) to Binary first.

· Regroup the binary number by three bits per group starting from LSB if Octal is required.

· Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required.

	
	
	[image: image85.png]

	
	
	Example:

	
	
	[image: image86.png]

	
	
	Convert 5A816 to Octal.

	
	
	[image: image87.png]

	
	
	Hexadecimal
Binary/Octal
5A816

= 0101 1010 1000 (Binary)

= 010 110 101 000 (Binary)

Result

= 2 6 5 0 (Octal)

	
	Binary Codes

	
	Binary codes are codes which are represented in binary system with modification from the original ones. Below we will be seeing the following:

 Weighted Binary Systems

Non Weighted Codes

	
	·

	
	·

	
	
	[image: image88.png]

	
	Weighted Binary Systems

Weighted binary codes are those which obey the positional weighting principles, each position of the number represents a specific weight. The binary counting sequence is an example.

	
	

	
	
	[image: image89.png]

	
	Decimal
8421
2421
5211
Excess-3
0

0000

0000

0000

0011

1

0001

0001

0001

0100

2

0010

0010

0011

0101

3

0011

0011

0101

0110

4

0100

0100

0111

0111

5

0101

1011

1000

1000

6

0110

1100

1010

1001

7

0111

1101

1100

1010

8

1000

1110

1110

1011

9

1001

1111

1111

1100

	

	
	
	[image: image90.png]

	
	8421 Code/BCD Code
The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to assign weights to the binary bits according to their positions. The weights in the BCD code are 8,4,2,1.

 Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9 because:

1x8+0x4+0x2+1x1 = 9

2421 Code

This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the decimal numbers from 0 to 9.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	[image: image91.png]

	
	[image: image92.png]
	5211 Code

	
	This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the decimal numbers from 0 to 9.

	
	

	
	

	
	
	[image: image93.png]

	
	[image: image94.png]
	Reflective Code

	
	A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the 8421 code is not.

 Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

	
	

	
	

	
	

	
	
	[image: image95.png]

	
	[image: image96.png]
	Non Weighted Codes

	
	Non weighted codes are codes that are not positionally weighted. That is, each position within the binary number is not assigned a fixed value.

	
	
	[image: image97.png]

	
	[image: image98.png]
	Excess-3 Code

	
	Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the fact that each binary code is the corresponding 8421 code plus 0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

	
	

	
	

	
	
	[image: image99.png]

	
	[image: image100.png]
	Gray Code

	
	The gray code belongs to a class of codes called minimum change codes, in which only one bit in the code changes when moving from one code to the next. The Gray code is non-weighted code, as the position of bit does not contain any weight. The gray code is a reflective digital code which has the special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

	
	
	[image: image101.png]

	
	
	Decimal Number
Binary Code
Gray Code
0

0000

0000

1

0001

0001

2

0010

0011

3

0011

0010

4

0100

0110

5

0101

0111

6

0110

0101

7

0111

0100

8

1000

1100

9

1001

1101

10

1010

1111

11

1011

1110

12

1100

1010

13

1101

1011

14

1110

1001

15

1111

1000

	
	
	[image: image102.png]

	
	
	Binary to Gray Conversion

	
	
	[image: image103.png]

	
	· Gray Code MSB is binary code MSB.

· Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.

· MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

· MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

	Error Detecting and Correction Codes

	For reliable transmission and storage of digital data, error detection and correction is required. Below are a few examples of codes which permit error detection and error correction after detection.

	Error Detecting Codes
	[image: image104.png]
	

	
	
	

	When data is transmitted from one point to another, like in wireless transmission, or it is just stored, like in hard disks and memories, there are chances that data may get corrupted. To detect these data errors, we use special codes, which are error detection codes.

	
	
	[image: image105.png]

	

Parity

In parity codes, every data byte, or nibble (according to how user wants to use it) is checked if they have even number of ones or even number of zeros. Based on this information an additional bit is appended to the original data. Thus if we consider 8-bit data, adding the parity bit will make it 9 bit long.

 At the receiver side, once again parity is calculated and matched with the received parity (bit 9), and if they match, data is ok, otherwise data is corrupt.

 There are two types of parity:

· Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When the number of ones is odd then parity bit is set to 1.

Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When number of ones is even then parity bit is set to 1.

	The parity method is calculated over byte, word or double word. But when errors need to be checked over 128 bytes or more (basically blocks of data), then calculating parity is not the right way. So we have checksum, which allows to check for errors on block of data. There are many variations of checksum.

 Adding all bytes

· CRC

· Fletcher's checksum

· Adler-32

 The simplest form of checksum, which simply adds up the asserted bits in the data, cannot detect a number of types of errors. In particular, such a checksum is not changed by:

· Reordering of the bytes in the message

· Inserting or deleting zero-valued bytes

· Multiple errors which sum to zero

 Example of Checksum : Given 4 bytes of data (can be done with any number of bytes): 25h, 62h, 3Fh, 52h

· Adding all bytes together gives 118h.

· Drop the Carry Nibble to give you 18h.

· Get the two's complement of the 18h to get E8h. This is the checksum byte.

 To Test the Checksum byte simply add it to the original group of bytes. This should give you 200h.

Drop the carry nibble again giving 00h. Since it is 00h this means the checksum means the bytes were probably not changed.

	
	
	[image: image106.png]

	
	
	

	
	
	[image: image107.png]

	

Error-Correcting Codes

	Error correcting codes not only detect errors, but also correct them. This is used normally in Satellite communication, where turn-around delay is very high as is the probability of data getting corrupt.

 ECC (Error correcting codes) are used also in memories, networking, Hard disk, CDROM, DVD etc. Normally in networking chips (ASIC), we have 2 Error detection bits and 1 Error correction bit.

	
	
	[image: image108.png]

	 Hamming Code

 Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error. It can detect (not correct) two-bits errors and cannot distinguish between 1-bit and 2-bits inconsistencies. It can't - in general - detect 3(or more)-bits errors The idea is that the failed bit position in an n-bit string (which we'll call X) can be represented in binary with log2(n) bits, hence we'll try to get it adding just log2(n) bits.

	 Now we set each added bit to the parity of a group of bits. We group bits this way: we form a group for every parity bit, where the following relation holds: [image: image109.png]
position(bit) AND position(parity) = position(parity)

(Note that: AND is the bit-wise boolean AND; parity bits are included in the groups; each bit can belong to one or more groups.)

 So bit 1 groups bits 1, 3, 5, 7... while bit 2 groups bits 2, 3, 6, 7, 10... , bit 4 groups bits 4, 5, 6, 7, 12, 13... and so on.

 Thus, by definition, X (the failed bit position defined above) is the sum of the incorrect parity bits positions (0 for no errors).

[image: image110.png]
To understand why it is so, let's call Xn the nth bit of X in binary representation. Now consider that each parity bit is tied to a bit of X: parity1 -> X1, parity2 -> X2, parity4 -> X3, parity8 -> X4 and so on - forprogrammers: they are the respective AND masks -. By construction, the failed bit makes fail only the parity bits which correspond to the 1s in X, so each bit of X is 1 if the corresponding parity is wrong and 0 if it is correct.

[image: image111.png]
Note that the longer the string, the higher the throughput n/m and the lower the probability that no more than one bit fails. So the string to be sent should be broken into blocks whose length depends on the transmision channel quality (the cleaner the channel, the bigger the block). Also, unless it's guaranteed that at most one bit per block fails, a checksum or some other form of data integrity check should be added.

	
	
	[image: image112.png]

	
	[image: image113.png]
	Alphanumeric Codes

	The binary codes that can be used to represent all the letters of the alphabet, numbers and mathematical symbols, punctuation marks, are known as alphanumeric codes or character codes. These codes enable us to interface the input-output devices like the keyboard, printers, video displays with the computer.

	
	
	[image: image114.png]

	 ASCII Code

	ASCII stands for American Standard Code for Information Interchange. It has become a world standard alphanumeric code for microcomputers and computers. It is a 7-bit code representing 27 = 128 different characters. These characters represent 26 upper case letters (A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 33 control characters.

 The 7-bit code is divided into two portions, The leftmost 3 bits portion is called zone bits and the 4-bit portion on the right is called numeric bits.

An 8-bit version of ASCII code is known as USACC-II 8 or ASCII-8. The 8-bit version can represent a maximum of 256 characters.

	
	
	[image: image115.png]

	
	[image: image116.png]
	EBCDIC Code

	EBCDIC stands for Extended Binary Coded Decimal Interchange. It is mainly used with large computer systems like mainframes. EBCDIC is an 8-bit code and thus accomodates up to 256 characters. An EBCDIC code is divided into two portions: 4 zone bits (on the left) and 4 numeric bits (on the right).

	Floating Point Numbers

	
	
	A real number or floating point number is a number which has both an integer and a fractional part. Examples for real real decimal numbers are 123.45, 0.1234, -0.12345, etc. Examples for real binary numbers are 1100.1100, 0.1001, -1.001, etc. In general, floating point numbers are expressed in exponential notation.

	
	
	[image: image117.png]

	
	
	For example the decimal number

	
	
	· 30000.0 can be written as 3 x 104.

· 312.45 can be written as 3.1245 x 102.

	
	
	[image: image118.png]

	
	
	Similarly, the binary number 1010.001 can be written as 1.010001 x 103.

	
	
	[image: image119.png]

	
	
	The general form of a number N can be expressed as

	
	
	[image: image120.png]

	
	
	N = ± m x b±e.

	
	
	[image: image121.png]

	
	
	Where m is mantissa, b is the base of number system and e is the exponent. A floating point number is represented by two parts. The number first part, called mantissa, is a signed fixed point number and the second part, called exponent, specifies the decimal or binary position.

	
	
	[image: image122.png]

	
	
	[image: image123.png]

	
	
	

	
	
	[image: image124.png]

	
	[image: image125.png]
	Binary Representation of Floating Point Numbers

	
	
	A floating point binary number is also represented as in the case of decimal numbers. It means that mantissa and exponent are expressed using signed magnitude notation in which one bit is reserved for sign bit.

	
	
	[image: image126.png]

	
	
	Consider a 16-bit word used to store the floating point numbers; assume that 9 bits are reserved for mantissa and 7 bits for exponent and also assume that the mantissa part is represented in fraction system. This implies the assumed binary point is at the mantissa sign bit immediate right.

	
	
	[image: image127.png]

	
	
	[image: image128.png]

	
	
	[image: image129.png]

	
	[image: image130.png]
	Example

	
	
	A binary number 1101.01 is represented as

	
	
	Mantissa = 110101 = (1101.01)2 = 0.110101 X 24

	
	
	[image: image131.png]

	
	
	Exponent = (4)10

	
	
	Expanding mantissa to 8 bits we get 11010100

	
	
	Binary representation of exponent (4)10 = 000100

	
	
	[image: image132.png]

	
	
	The required representation is

	
	
	[image: image133.png]

	
	
	[image: image134.png]

	Symbolic Logic

	Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations :

 True is represented by the value 1.

· False is represented by the value 0.

Variables are represented by letters and can have one of two values, either 0 or 1. Operations are functions of one or more variables.

· AND is represented by X.Y

· OR is represented by X + Y

· NOT is represented by X' . Throughout this tutorial the X' form will be used and sometime !X will be used.

These basic operations can be combined to give expressions.

 Example :

 X

· X.Y

· W.X.Y + Z

	

[image: image135.png]

Precedence

	As with any other branch of mathematics, these operators have an order of precedence. NOT operations have the highest precedence, followed by AND operations, followed by OR operations. Brackets can be used as with other forms of algebra. e.g.

[image: image136.png]
X.Y + Z and X.(Y + Z) are not the same function.

	
	
	[image: image137.png]

	
	[image: image138.png]
	Function Definitions

	The logic operations given previously are defined as follows :

[image: image139.png]
Define f(X,Y) to be some function of the variables X and Y.

[image: image140.png]
f(X,Y) = X.Y
· 1 if X = 1 and Y = 1

· 0 Otherwise

[image: image141.png]
f(X,Y) = X + Y

· 1 if X = 1 or Y = 1

· 0 Otherwise

[image: image142.png]
f(X) = X'
· 1 if X = 0

· 0 Otherwise

	
	
	[image: image143.png]

	
	[image: image144.png]
	Truth Tables

	Truth tables are a means of representing the results of a logic function using a table. They are constructed by defining all possible combinations of the inputs to a function, and then calculating the output for each combination in turn. For the three functions we have just defined, the truth tables are as follows.

[image: image145.png]
AND
X
Y
F(X,Y)
0

0

0

0

1

0

1

0

0

1

1

1

[image: image146.png]
OR
X
Y
F(X,Y)
0

0

0

0

1

1

1

0

1

1

1

1

[image: image147.png]
NOT
X
F(X)
0

1

1

0

[image: image148.png]
Truth tables may contain as many input variables as desired

[image: image149.png]
F(X,Y,Z) = X.Y + Z
X
Y
Z
F(X,Y,Z)
1d0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

1

	

	
	[image: image150.png]

	
	[image: image151.png]
	Boolean Switching Algebras

	A Boolean Switching Algebra is one which deals only with two-valued variables. Boole's general theory covers algebras which deal with variables which can hold n values.

	
	
	[image: image152.png]

	
	[image: image153.png]
	Axioms

	Consider a set S = { 0. 1}
Consider two binary operations, + and . , and one unary operation, -- , that act on these elements. [S, ., +, --, 0, 1] is called a switching algebra that satisfies the following axioms S

	
	
	[image: image154.png]

	
	[image: image155.png]
	Closure

	
	
	[image: image156.png]

	If X [image: image157.png]S and Y [image: image158.png]S then X.Y [image: image159.png]S

If X [image: image160.png]S and Y [image: image161.png]S then X+Y [image: image162.png]S

	
	
	[image: image163.png]

	
	[image: image164.png]
	Identity

	

 [image: image165.png]an identity 0 for + such that X + 0 = X

[image: image166.png]an identity 1 for . such that X . 1 = X

	
	
	[image: image167.png]

	
	[image: image168.png]
	Commutative Laws

	
	
	[image: image169.png]

	X + Y = Y + X

X . Y = Y . X

	
	
	[image: image170.png]

	
	[image: image171.png]
	Distributive Laws

	
	
	[image: image172.png]

	X.(Y + Z) = X.Y + X.Z

X + Y.Z = (X + Y) . (X + Z)

	
	
	[image: image173.png]

	
	[image: image174.png]
	Complement

	
	
	[image: image175.png]

	
	
	[image: image176.png]X [image: image177.png]S [image: image178.png]a complement X'such that

	
	
	X + X' = 1

	X . X' = 0

The complement X' is unique.

	
	
	[image: image179.png]

	
	
	

	
	
	[image: image180.png]

	
	[image: image181.png]
	Theorems

	

[image: image182.png]A number of theorems may be proved for switching algebras

	
	
	[image: image183.png]

	
	[image: image184.png]
	Idempotent Law

	
	
	[image: image185.png]

	
	
	X + X = X

	
	
	X . X = X

	
	
	[image: image186.png]

	
	[image: image187.png]
	DeMorgan's Law

	
	
	[image: image188.png]

	(X + Y)' = X' . Y', These can be proved by the use of truth tables.

 Proof of (X + Y)' = X' . Y'

	
	
	[image: image189.png]

	
	
	X
Y
X+Y
(X+Y)'
0

0

0

1

0

1

1

0

1

0

1

0

1

1

1

0

	
	
	[image: image190.png]

	
	
	X
Y
X'
Y'
X'.Y'
0

0

1

1

1

0

1

1

0

0

1

0

0

1

0

1

1

0

0

0

	
	
	[image: image191.png]

	
	
	The two truth tables are identical, and so the two expressions are identical.

	
	
	[image: image192.png]

	
	
	(X.Y) = X' + Y', These can be proved by the use of truth tables.

	
	
	[image: image193.png]

	
	
	Proof of (X.Y) = X' + Y'

	
	
	[image: image194.png]

	
	
	X
Y
X.Y
(X.Y)'
0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

0

	
	
	[image: image195.png]

	
	
	X
Y
X'
Y'
X'+Y'
0

0

1

1

1

0

1

1

0

1

1

0

0

1

1

1

1

0

0

0

	
	
	[image: image196.png]

	
	
	Note : DeMorgans Laws are applicable for any number of variables.

	
	
	[image: image197.png]

	
	[image: image198.png]
	Boundedness Law

	
	
	[image: image199.png]

	
	
	X + 1 = 1

	
	
	X . 0 = 0

	
	
	[image: image200.png]

	
	[image: image201.png]
	Absorption Law

	
	
	[image: image202.png]

	
	
	X + (X . Y) = X

	
	
	X . (X + Y) = X

	
	
	[image: image203.png]

	
	[image: image204.png]
	Elimination Law

	
	
	[image: image205.png]

	
	
	X + (X' . Y) = X + Y

	
	
	X.(X' + Y) = X.Y

	
	
	[image: image206.png]

	
	[image: image207.png]
	Unique Complement theorem

	
	
	[image: image208.png]

	
	
	If X + Y = 1 and X.Y = 0 then X = Y'

	
	
	[image: image209.png]

	
	[image: image210.png]
	Involution theorem

	
	
	[image: image211.png]

	
	
	X'' = X

	
	
	0' = 1

	
	
	[image: image212.png]

	
	[image: image213.png]
	Associative Properties

	
	
	[image: image214.png]

	
	
	X + (Y + Z) = (X + Y) + Z

	
	
	X . (Y . Z) = (X . Y) . Z

	
	
	[image: image215.png]

	
	[image: image216.png]
	Duality Principle

	
	
	In Boolean algebras the duality Principle can be is obtained by interchanging AND and OR operators and replacing 0's by 1's and 1's by 0's. Compare the identities on the left side with the identities on the right.

	
	
	[image: image217.png]

	
	
	Example

	
	
	[image: image218.png]

	
	
	X.Y+Z' = (X'+Y').Z

	
	
	[image: image219.png]

	
	[image: image220.png]
	Consensus theorem

	
	
	[image: image221.png]

	
	
	X.Y + X'.Z + Y.Z = X.Y + X'.Z

	
	
	or dual form as below

	
	
	(X + Y).(X' + Z).(Y + Z) = (X + Y).(X' + Z)

	
	
	[image: image222.png]

	
	
	Proof of X.Y + X'.Z + Y.Z = X.Y + X'.Z:

	
	
	[image: image223.png]

	
	
	X.Y + X'.Z + Y.Z
= X.Y + X'.Z
X.Y + X'.Z + (X+X').Y.Z

= X.Y + X'.Z

X.Y.(1+Z) + X'.Z.(1+Y)

= X.Y + X'.Z

X.Y + X'.Z

= X.Y + X'.Z

	
	
	[image: image224.png]

	
	
	(X.Y'+Z).(X+Y).Z = X.Z+Y.Z instead of X.Z+Y'.Z

	
	
	X.Y'Z+X.Z+Y.Z

	
	
	(X.Y'+X+Y).Z

	
	
	(X+Y).Z

	
	
	X.Z+Y.Z

	
	
	[image: image225.png]

	
	
	The term which is left out is called the consensus term.

	
	
	[image: image226.png]

	
	
	Given a pair of terms for which a variable appears in one term, and its complement in the other, then the consensus term is formed by ANDing the original terms together, leaving out the selected variable and its complement.

	
	
	[image: image227.png]

	
	
	Example :

	
	
	The consensus of X.Y and X'.Z is Y.Z

	
	
	[image: image228.png]

	
	
	The consensus of X.Y.Z and Y'.Z'.W' is (X.Z).(Z.W')

	
	
	[image: image229.png]

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	[image: image230.png]

	
	
	

	Algebraic Manipulation

	
	
	[image: image231.png]

	
	
	[image: image232.png]

	
	[image: image233.png]
	Minterms and Maxterms

	
	
	[image: image234.png]

	
	
	Any boolean expression may be expressed in terms of either minterms or maxterms. To do this we must first define the concept of a literal. A literal is a single variable within a term which may or may not be complemented. For an expression with N variables, minterms and maxterms are defined as follows :

	
	
	· A minterm is the product of N distinct literals where each literal occurs exactly once.

· A maxterm is the sum of N distinct literals where each literal occurs exactly once.

	
	
	For a two-variable expression, the minterms and maxterms are as follows

	
	
	[image: image235.png]

	
	
	X
Y
Minterm
Maxterm
0

0

X'.Y'

X+Y

0

1

X'.Y

X+Y'

1

0

X.Y'

X'+Y

1

1

X.Y

X'+Y'

	
	
	[image: image236.png]

	
	
	For a three-variable expression, the minterms and maxterms are as follows

	
	
	[image: image237.png]

	
	
	X
Y
Z
Minterm
Maxterm
0

0

0

X'.Y'.Z'

X+Y+Z

0

0

1

X'.Y'.Z

X+Y+Z'

0

1

0

X'.Y.Z'

X+Y'+Z

0

1

1

X'.Y.Z

X+Y'+Z'

1

0

0

X.Y'.Z'

X'+Y+Z

1

0

1

X.Y'.Z

X'+Y+Z'

1

1

0

X.Y.Z'

X'+Y'+Z

1

1

1

X.Y.Z

X'+Y'+Z'

	
	
	[image: image238.png]

	
	
	This allows us to represent expressions in either Sum of Products or Product of Sums forms

	
	
	[image: image239.png]

	
	[image: image240.png]
	Sum Of Products (SOP)

	
	
	[image: image241.png]

	
	
	The Sum of Products form represents an expression as a sum of minterms.

	
	
	[image: image242.png]

	
	
	F(X, Y, ...) = Sum (ak.mk)

	
	
	[image: image243.png]

	
	
	where ak is 0 or 1 and mk is a minterm.

	
	
	[image: image244.png]

	
	
	To derive the Sum of Products form from a truth table, OR together all of the minterms which give a value of 1.

	
	
	[image: image245.png]

	
	[image: image246.png]
	Example - SOP

	
	
	[image: image247.png]

	
	
	Consider the truth table

	
	
	[image: image248.png]

	
	
	X
Y
F
Minterm
0

0

0

X'.Y'

0

1

0

X'Y

1

0

1

X.Y'

1

1

1

X.Y

	
	
	Here SOP is f(X.Y) = X.Y' + X.Y

	
	
	[image: image249.png]

	
	[image: image250.png]
	Product Of Sum (POS)

	
	
	[image: image251.png]

	
	
	The Product of Sums form represents an expression as a product of maxterms.

	
	
	[image: image252.png]

	
	
	F(X, Y,) = Product (bk + Mk), where bk is 0 or 1 and Mk is a maxterm.

	
	
	[image: image253.png]

	
	
	To derive the Product of Sums form from a truth table, AND together all of the maxterms which give a value of 0.

	
	
	[image: image254.png]

	
	
	

	
	
	[image: image255.png]

	
	[image: image256.png]
	Example - POS

	
	
	[image: image257.png]

	
	
	Consider the truth table from the previous example.

	
	
	[image: image258.png]

	
	
	X
Y
F
Maxterm
0

0

1

X+Y

0

1

0

X+Y'

1

0

1

X'+Y

1

1

1

X'+Y'

	
	
	Here POS is F(X,Y) = (X+Y')

	
	
	[image: image259.png]

	
	[image: image260.png]
	Exercise

	
	
	[image: image261.png]

	
	
	Give the expression represented by the following truth table in both Sum of Products and Product of Sums forms.

	
	
	[image: image262.png]

	
	
	X
Y
Z
F(X,Y,X)
0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

0

	
	
	[image: image263.png]

	
	[image: image264.png]
	Conversion between POS and SOP

	
	
	[image: image265.png]

	
	
	Conversion between the two forms is done by application of DeMorgans Laws.

	
	
	[image: image266.png]

	
	[image: image267.png]
	Simplification

	
	
	As with any other form of algebra you have encountered, simplification of expressions can be performed with Boolean algebra.

	
	
	[image: image268.png]

	
	[image: image269.png]
	Example

	
	
	[image: image270.png]

	
	
	Show that X.Y.Z' + X'.Y.Z' + Y.Z = Y

	
	
	[image: image271.png]

	
	
	X.Y.Z' + X'.Y.Z' + Y.Z = Y.Z' + Y.Z = Y

	
	
	[image: image272.png]

	
	[image: image273.png]
	Example

	
	
	[image: image274.png]

	
	
	Show that (X.Y' + Z).(X + Y).Z = X.Z + Y.Z

	
	
	[image: image275.png]

	
	
	(X.Y' + Z).(X + Y).Z

	
	
	= (X.Y' + Z.X + Y'.Z).Z

	
	
	= X.Y'Z + Z.X + Y'.Z

	
	
	= Z.(X.Y' + X + Y')

	
	
	= Z.(X+Y')

	Logic Gates

	
	
	A logic gate is an electronic circuit/device which makes the logical decisions. To arrive at this decisions, the most common logic gates used are OR, AND, NOT, NAND, and NOR gates. The NAND and NOR gates are called universal gates. The exclusive-OR gate is another logic gate which can be constructed using AND, OR and NOT gate.

	
	
	[image: image276.png]

	
	
	Logic gates have one or more inputs and only one output. The output is active only for certain input combinations. Logic gates are the building blocks of any digital circuit. Logic gates are also called switches. With the advent of integrated circuits, switches have been replaced by TTL (Transistor Transistor Logic) circuits and CMOS circuits. Here I give example circuits on how to construct simples gates.

	
	
	Symbolic Logic

	
	
	Boolean algebra derives its name from the mathematician George Boole. Symbolic Logic uses values, variables and operations.

	
	
	[image: image277.png]

	
	[image: image278.png]
	Inversion

	
	
	A small circle on an input or an output indicates inversion. See the NOT, NAND and NOR gates given below for examples.

	
	
	[image: image279.png]

	
	
	[image: image280.png]

	
	
	[image: image281.png]

	
	[image: image282.png]
	Multiple Input Gates

	
	
	Given commutative and associative laws, many logic gates can be implemented with more than two inputs, and for reasons of space in circuits, usually multiple input, complex gates are made. You will encounter such gates in real world (maybe you could analyze an ASIC lib to find this).

	
	
	[image: image283.png]

	
	[image: image284.png]
	Gates Types

	
	
	[image: image285.png]

	
	
	· AND

· OR

· NOT

· BUF

· NAND

· NOR

· XOR

· XNOR

	
	
	[image: image286.png]

	
	
	

	
	
	[image: image287.png]

	
	[image: image288.png]
	AND Gate

	
	
	The AND gate performs logical multiplication, commonly known as AND function. The AND gate has two or more inputs and single output. The output of AND gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW).

	
	
	[image: image289.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate is shown in the figure below.

	
	
	[image: image290.png]

	
	
	Symbol

	
	
	[image: image291.png]

	
	
	[image: image292.png]

	
	
	[image: image293.png]

	
	
	Truth Table

	
	
	[image: image294.png]

	
	
	X
Y
F=(X.Y)
0

0

0

0

1

0

1

0

0

1

1

1

	
	
	[image: image295.png]

	
	
	Two input AND gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	
	
	[image: image296.png]

	
	
	Circuit

	
	
	[image: image297.png]

	
	
	[image: image298.png]

	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are forward biased and thus both diodes conduct and pull F low.

	
	
	[image: image299.png]

	
	
	If X = 0 and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulls F low.

	
	
	[image: image300.png]

	
	
	If X = 1 and Y = 0, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulls F low.

	
	
	[image: image301.png]

	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus there is no drop in voltage at F. Thus F is HIGH.

	
	
	[image: image302.png]

	
	
	[image: image303.png]

	
	[image: image304.png]
	Switch Representation of AND Gate

	
	
	In the figure below, X and Y are two switches which have been connected in series (or just cascaded) with the load LED and source battery. When both switches are closed, current flows to LED.

	
	
	[image: image305.png]

	
	
	[image: image306.png]

	
	
	[image: image307.png]

	
	[image: image308.png]
	Three Input AND gate

	
	
	Since we have already seen how a AND gate works and I will just list the truth table of a 3 input AND gate. The figure below shows its symbol and truth table.

	
	
	[image: image309.png]

	
	
	Circuit

	
	
	[image: image310.png]

	
	
	[image: image311.png]

	
	
	Truth Table

	
	
	X
Y
Z
F=X.Y.Z
0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1

	
	
	[image: image312.png]

	
	[image: image313.png]
	OR Gate

	
	
	The OR gate performs logical addition, commonly known as OR function. The OR gate has two or more inputs and single output. The output of OR gate is HIGH only when any one of its inputs are HIGH (i.e. even if one input is HIGH, Output will be HIGH).

	
	
	[image: image314.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X+Y. Here plus sign (+) denotes the OR operation. Truth table and symbol of the OR gate is shown in the figure below.

	
	
	[image: image315.png]

	
	
	Symbol

	
	
	[image: image316.png]

	
	
	[image: image317.png]

	
	
	[image: image318.png]

	
	
	Truth Table

	
	
	[image: image319.png]

	
	
	X
Y
F=(X+Y)
0

0

0

0

1

1

1

0

1

1

1

1

	
	
	[image: image320.png]

	
	
	Two input OR gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is the output.

	
	
	[image: image321.png]

	
	
	Circuit

	
	
	[image: image322.png]

	
	
	[image: image323.png]

	
	
	If X = 0 and Y = 0, then both diodes D1 and D2 are reverse biased and thus both the diodes are in cut-off and thus F is low.

	
	
	[image: image324.png]

	
	
	If X = 0 and Y = 1, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus conducts and thus pulling F to HIGH.

	
	
	[image: image325.png]

	
	
	If X = 1 and Y = 0, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus conducts and thus pulling F to HIGH.

	
	
	[image: image326.png]

	
	
	If X = 1 and Y = 1, then both diodes D1 and D2 are forward biased and thus both the diodes conduct and thus F is HIGH.

	
	
	[image: image327.png]

	
	[image: image328.png]
	Switch Representation of OR Gate

	
	
	In the figure, X and Y are two switches which have been connected in parallel, and this is connected in series with the load LED and source battery. When both switches are open, current does not flow to LED, but when any switch is closed then current flows.

	
	
	[image: image329.png]

	
	
	[image: image330.png]

	
	
	[image: image331.png]

	
	[image: image332.png]
	Three Input OR gate

	
	
	Since we have already seen how an OR gate works, I will just list the truth table of a 3-input OR gate. The figure below shows its circuit and truth table.

	
	
	[image: image333.png]

	
	
	Circuit

	
	
	[image: image334]

	
	
	[image: image335.png]

	
	
	Truth Table

	
	
	X
Y
Z
F=X+Y+Z
0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

1

	NOT Gate

	
	
	The NOT gate performs the basic logical function called inversion or complementation. NOT gate is also called inverter. The purpose of this gate is to convert one logic level into the opposite logic level. It has one input and one output. When a HIGH level is applied to an inverter, a LOW level appears on its output and vice versa.

	
	
	[image: image336.png]

	
	
	If X is the input, then output F can be represented mathematically as F = X', Here apostrophe (') denotes the NOT (inversion) operation. There are a couple of other ways to represent inversion, F= !X, here ! represents inversion. Truth table and NOT gate symbol is shown in the figure below.

	
	
	[image: image337.png]

	
	
	Symbol

	
	
	[image: image338.png]

	
	
	[image: image339.png]

	
	
	[image: image340.png]

	
	
	Truth Table

	
	
	[image: image341.png]

	
	
	X
Y=X'
0

1

1

0

	
	
	[image: image342.png]

	
	
	NOT gate using "transistor-resistor" logic is shown in the figure below, where X is the input and F is the output.

	
	
	[image: image343.png]

	
	
	Circuit

	
	
	[image: image344.png]

	
	
	[image: image345.png]

	
	
	[image: image346.png]

	
	
	When X = 1, The transistor input pin 1 is HIGH, this produces the forward bias across the emitter base junction and so the transistor conducts. As the collector current flows, the voltage drop across RL increases and hence F is LOW.

	
	
	[image: image347.png]

	
	
	When X = 0, the transistor input pin 2 is LOW: this produces no bias voltage across the transistor base emitter junction. Thus Voltage at F is HIGH.

	
	
	[image: image348.png]

	
	[image: image349.png]
	BUF Gate

	
	
	Buffer or BUF is also a gate with the exception that it does not perform any logical operation on its input. Buffers just pass input to output. Buffers are used to increase the drive strength or sometime just to introduce delay. We will look at this in detail later.

	
	
	[image: image350.png]

	
	
	If X is the input, then output F can be represented mathematically as F = X. Truth table and symbol of the Buffer gate is shown in the figure below.

	
	
	[image: image351.png]

	
	
	Symbol

	
	
	[image: image352.png]

	
	
	[image: image353.png]

	
	
	[image: image354.png]

	
	
	Truth Table

	
	
	X
Y=X
0

0

1

1

	
	
	[image: image355.png]

	
	
	

	
	
	[image: image356.png]

	
	[image: image357.png]
	NAND Gate

	
	
	NAND gate is a cascade of AND gate and NOT gate, as shown in the figure below. It has two or more inputs and only one output. The output of NAND gate is HIGH when any one of its input is LOW (i.e. even if one input is LOW, Output will be HIGH).

	
	
	[image: image358.png]

	
	
	NAND From AND and NOT

	
	
	[image: image359.png]

	
	
	[image: image360.png]

	
	
	[image: image361.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = (X.Y)', Here dot (.) denotes the AND operation and (') denotes inversion. Truth table and symbol of the N AND gate is shown in the figure below.

	
	
	[image: image362.png]

	
	
	Symbol

	
	
	[image: image363.png]

	
	
	[image: image364.png]

	
	
	[image: image365.png]

	
	
	Truth Table

	
	
	[image: image366.png]

	
	
	X
Y
F=(X.Y)'
0

0

1

0

1

1

1

0

1

1

1

0

	
	
	[image: image367.png]

	
	[image: image368.png]
	NOR Gate

	
	
	NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below. It has two or more inputs and only one output. The output of NOR gate is HIGH when any all its inputs are LOW (i.e. even if one input is HIGH, output will be LOW).

	
	
	[image: image369.png]

	
	
	Symbol

	
	
	[image: image370.png]

	
	
	[image: image371.png]

	
	
	[image: image372.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = (X+Y)'; here plus (+) denotes the OR operation and (') denotes inversion. Truth table and symbol of the NOR gate is shown in the figure below.

	
	
	[image: image373.png]

	
	
	Truth Table

	
	
	[image: image374.png]

	
	
	X
Y
F=(X+Y)'
0

0

1

0

1

0

1

0

0

1

1

0

	
	
	[image: image375.png]

	
	[image: image376.png]
	XOR Gate

	
	
	An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one output. The output of a two-input XOR gate assumes a HIGH state if one and only one input assumes a HIGH state. This is equivalent to saying that the output is HIGH if either input X or input Y is HIGH exclusively, and LOW when both are 1 or 0 simultaneously.

	
	
	[image: image377.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X[image: image378.png]Y, Here [image: image379.png]denotes the XOR operation. X[image: image380.png]Y and is equivalent to X.Y' + X'.Y. Truth table and symbol of the XOR gate is shown in the figure below.

	
	
	[image: image381.png]

	
	
	XOR From Simple gates

	
	
	[image: image382.png]

	
	
	[image: image383.png]

	
	
	[image: image384.png]

	
	
	Symbol

	
	
	[image: image385.png]

	
	
	[image: image386.png]

	
	
	[image: image387.png]

	
	
	Truth Table

	
	
	[image: image388.png]

	
	
	X
Y
F=(X[image: image389.png]Y)
0

0

0

0

1

1

1

0

1

1

1

0

	
	
	[image: image390.png]

	
	[image: image391.png]
	XNOR Gate

	
	
	An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and one output. The output of a two-input XNOR gate assumes a HIGH state if all the inputs assumes same state. This is equivalent to saying that the output is HIGH if both input X and input Y is HIGH exclusively or same as input X and input Y is LOW exclusively, and LOW when both are not same.

	
	
	[image: image392.png]

	
	
	If X and Y are two inputs, then output F can be represented mathematically as F = X[image: image393.png]Y, Here [image: image394.png]denotes the XNOR operation. X[image: image395.png]Y and is equivalent to X.Y + X'.Y'. Truth table and symbol of the XNOR gate is shown in the figure below.

	
	
	[image: image396.png]

	
	
	Symbol

	
	
	[image: image397.png]

	
	
	[image: image398.png]

	
	
	[image: image399.png]

	
	
	Truth Table

	
	
	[image: image400.png]

	
	
	X
Y
F=(X[image: image401.png]Y)'
0

0

1

0

1

0

1

0

0

1

1

1

	Universal Gates

	
	
	Universal gates are the ones which can be used for implementing any gate like AND, OR and NOT, or any combination of these basic gates; NAND and NOR gates are universal gates. But there are some rules that need to be followed when implementing NAND or NOR based gates.

	
	
	[image: image402.png]

	
	
	To facilitate the conversion to NAND and NOR logic, we have two new graphic symbols for these gates.

	
	
	[image: image403.png]

	
	
	NAND Gate

	
	
	[image: image404.png]

	
	
	[image: image405.png]

	
	
	NOR Gate

	
	
	[image: image406.png]

	
	
	[image: image407.png]

	
	[image: image408.png]
	Realization of logic function using NAND gates

	
	
	Any logic function can be implemented using NAND gates. To achieve this, first the logic function has to be written in Sum of Product (SOP) form. Once logic function is converted to SOP, then is very easy to implement using NAND gate. In other words any logic circuit with AND gates in first level and OR gates in second level can be converted into a NAND-NAND gate circuit.

	
	
	[image: image409.png]

	
	
	Consider the following SOP expression

	
	
	[image: image410.png]

	
	
	F = W.X.Y + X.Y.Z + Y.Z.W

	
	
	[image: image411.png]

	
	
	The above expression can be implemented with three AND gates in first stage and one OR gate in second stage as shown in figure.

	
	
	[image: image412.png]

	
	
	[image: image413.png]

	
	
	[image: image414.png]

	
	
	If bubbles are introduced at AND gates output and OR gates inputs (the same for NOR gates), the above circuit becomes as shown in figure.

	
	
	[image: image415.png]

	
	
	[image: image416.png]

	
	
	[image: image417.png]

	
	
	Now replace OR gate with input bubble with the NAND gate. Now we have circuit which is fully implemented with just NAND gates.

	
	
	[image: image418.png]

	
	
	[image: image419.png]

	
	
	[image: image420.png]

	
	[image: image421.png]
	Realization of logic gates using NAND gates

	
	
	[image: image422.png]

	
	
	[image: image423.png]

	
	[image: image424.png]
	Implementing an inverter using NAND gate

	
	
	[image: image425.png]

	
	
	Input
Output
Rule
(X.X)'

= X'

Idempotent

	
	
	[image: image426.png]

	
	
	[image: image427.png]

	
	
	[image: image428.png]

	
	[image: image429.png]
	Implementing AND using NAND gates

	
	
	[image: image430.png]

	
	
	Input
Output
Rule
((XY)'(XY)')'

= ((XY)')'

Idempotent

= (XY)

Involution

	
	
	[image: image431.png]

	
	
	[image: image432.png]

	
	
	[image: image433.png]

	
	[image: image434.png]
	Implementing OR using NAND gates

	
	
	[image: image435.png]

	
	
	Input
Output
Rule
((XX)'(YY)')'

= (X'Y')'

Idempotent

= X''+Y''

DeMorgan

= X+Y

Involution

	
	
	[image: image436.png]

	
	
	[image: image437.png]

	
	
	[image: image438.png]

	
	
	

	
	
	[image: image439.png]

	
	[image: image440.png]
	Implementing NOR using NAND gates

	
	
	[image: image441.png]

	
	
	Input
Output
Rule
((XX)'(YY)')'

=(X'Y')'

Idempotent

=X''+Y''

DeMorgan

=X+Y

Involution

=(X+Y)'

Idempotent

	
	
	[image: image442.png]

	
	
	[image: image443.png]

	
	
	[image: image444.png]

	
	[image: image445.png]
	Realization of logic function using NOR gates

	
	
	Any logic function can be implemented using NOR gates. To achieve this, first the logic function has to be written in Product of Sum (POS) form. Once it is converted to POS, then it's very easy to implement using NOR gate. In other words any logic circuit with OR gates in first level and AND gates in second level can be converted into a NOR-NOR gate circuit.

	
	
	[image: image446.png]

	
	
	Consider the following POS expression

	
	
	[image: image447.png]

	
	
	F = (X+Y) . (Y+Z)

	
	
	[image: image448.png]

	
	
	The above expression can be implemented with three OR gates in first stage and one AND gate in second stage as shown in figure.

	
	
	[image: image449.png]

	
	
	[image: image450.png]

	
	
	[image: image451.png]

	
	
	If bubble are introduced at the output of the OR gates and the inputs of AND gate, the above circuit becomes as shown in figure.

	
	
	[image: image452.png]

	
	
	[image: image453.png]

	
	
	[image: image454.png]

	
	
	Now replace AND gate with input bubble with the NOR gate. Now we have circuit which is fully implemented with just NOR gates.

	
	
	[image: image455.png]

	
	
	[image: image456.png]

	
	
	[image: image457.png]

	
	[image: image458.png]
	Realization of logic gates using NOR gates

	
	
	[image: image459.png]

	
	
	[image: image460.png]

	
	[image: image461.png]
	Implementing an inverter using NOR gate

	
	
	[image: image462.png]

	
	
	Input
Output
Rule
(X+X)'

= X'

Idempotent

	
	
	[image: image463.png]

	
	
	[image: image464.png]

	
	
	[image: image465.png]

	
	[image: image466.png]
	Implementing AND using NOR gates

	
	
	[image: image467.png]

	
	
	Input
Output
Rule
((X+X)'+(Y+Y)')'

=(X'+Y')'

Idempotent

= X''.Y''

DeMorgan

= (X.Y)

Involution

	
	
	[image: image468.png]

	
	
	[image: image469.png]

	
	
	[image: image470.png]

	
	[image: image471.png]
	Implementing OR using NOR gates

	
	
	[image: image472.png]

	
	
	Input
Output
Rule
((X+Y)'+(X+Y)')'

= ((X+Y)')'

Idempotent

= X+Y

Involution

	
	
	[image: image473.png]

	
	
	[image: image474.png]

	
	
	[image: image475.png]

	
	[image: image476.png]
	Implementing NAND using NOR gates

	
	
	[image: image477.png]

	
	
	Input
Output
Rule
((X+Y)'+(X+Y)')'

= ((X+Y)')'

Idempotent

= X+Y

Involution

= (X+Y)'

Idempotent

	
	
	[image: image478.png]

	
	
	[image: image479.png]

	Introduction

	
	
	Simplification of Boolean functions is mainly used to reduce the gate count of a design. Less number of gates means less power consumption, sometimes the circuit works faster and also when number of gates is reduced, cost also comes down.

	
	
	[image: image480.png]

	
	
	There are many ways to simplify a logic design, some of them are given below. We will be looking at each of these in detail in the next few pages.

	
	
	· Algebraic Simplification.

· ->Simplify symbolically using theorems/postulates.

· ->Requires good skills

· Karnaugh Maps.

· ->Diagrammatic technique using 'Venn-like diagram'.

· ->Limited to no more than 6 variables.

	
	
	We have already seen how Algebraic Simplification works, so lets concentrate on Karnaugh Maps or simply k-maps.

	
	
	[image: image481.png]

	
	
	

	
	
	[image: image482.png]

	

[image: image483.png]Karnaugh Maps

	Karnaugh maps provide a systematic method to obtain simplified sum-of-products (SOPs) Boolean expressions. This is a compact way of representing a truth table and is a technique that is used to simplify logic expressions. It is ideally suited for four or less variables, becoming cumbersome for five or more variables. Each square represents either a minterm or maxterm. A K-map of n variables will have 2

squares. For a Boolean expression, product terms are denoted by 1's, while sum terms are denoted by 0's - but 0's are often left blank.

 A K-map consists of a grid of squares, each square representing one canonical minterm combination of the variables or their inverse. The map is arranged so that squares representing minterms which differ by only one variable are adjacent both vertically and horizontally. Therefore XY'Z' would be adjacent to X'Y'Z' and would also adjacent to XY'Z and XYZ'.

	
	
	[image: image484.png]

	

[image: image485.png]Minimization Technique

	
	
	· Based on the Unifying Theorem: X + X' = 1

· The expression to be minimized should generally be in sum-of-product form (If necessary, the conversion process is applied to create the sum-of-product form).

· The function is mapped onto the K-map by marking a 1 in those squares corresponding to the terms in the expression to be simplified (The other squares may be filled with 0's).

· Pairs of 1's on the map which are adjacent are combined using the theorem Y(X+X') = Y where Y is any Boolean expression (If two pairs are also adjacent, then these can also be combined using the same theorem).

· The minimization procedure consists of recognizing those pairs and multiple pairs.

· ->These are circled indicating reduced terms.

· Groups which can be circled are those which have two (21) 1's, four (22) 1's, eight (23) 1's, and so on.

· ->Note that because squares on one edge of the map are considered adjacent to those on the opposite edge, group can be formed with these squares.

· ->Groups are allowed to overlap.

· The objective is to cover all the 1's on the map in the fewest number of groups and to create the largest groups to do this.

· Once all possible groups have been formed, the corresponding terms are identified.

· ->A group of two 1's eliminates one variable from the original minterm.

· ->A group of four 1's eliminates two variables from the original minterm.

· ->A group of eight 1's eliminates three variables from the original minterm, and so on.

· ->The variables eliminated are those which are different in the original minterms of the group

	2-Variable K-Map

	
	
	In any K-Map, each square represents a minterm. Adjacent squares always differ by just one literal (So that the unifying theorem may apply: X + X' = 1). For the 2-variable case (e.g.: variables X, Y), the map can be drawn as below. Two variable map is the one which has got only two variables as input.

	
	
	[image: image486.png]

	
	
	[image: image487.png]

	
	
	[image: image488.png]

	
	[image: image489.png]
	Equivalent labeling

	
	
	K-map needs not follow the ordering as shown in the figure above. What this means is that we can change the position of m0, m1, m2, m3 of the above figure as shown in the two figures below.

	
	
	[image: image490.png]

	
	
	Position assignment is the same as the default k-maps positions. This is the one which we will be using throughout this tutorial.

	
	
	[image: image491.png]

	
	
	[image: image492.png]

	
	
	[image: image493.png]

	
	
	This figure is with changed position of m0, m1, m2, m3.

	
	
	[image: image494.png]

	
	
	[image: image495.png]

	
	
	[image: image496.png]

	
	
	The K-map for a function is specified by putting a '1' in the square corresponding to a minterm, a '0' otherwise.

	
	
	[image: image497.png]

	
	[image: image498.png]
	Example- Carry and Sum of a half adder

	
	
	In this example we have the truth table as input, and we have two output functions. Generally we may have n output functions for m input variables. Since we have two output functions, we need to draw two k-maps (i.e. one for each function). Truth table of 1 bit adder is shown below. Draw the k-map for Carry and Sum as shown below.

	
	
	[image: image499.png]

	
	
	X
Y
Sum
Carry
0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

	
	
	[image: image500.png]

	
	
	[image: image501.png]

	
	
	[image: image502.png]

	
	[image: image503.png]
	Grouping/Circling K-maps

	
	
	The power of K-maps is in minimizing the terms, K-maps can be minimized with the help of grouping the terms to form single terms. When forming groups of squares, observe/consider the following:

	
	
	[image: image504.png]

	
	
	· Every square containing 1 must be considered at least once.

· A square containing 1 can be included in as many groups as desired.

· A group must be as large as possible.

	
	
	[image: image505.png]

	
	
	[image: image506.png]

	
	
	[image: image507.png]

	
	
	· If a square containing 1 cannot be placed in a group, then leave it out to include in final expression.

· The number of squares in a group must be equal to 2

· , i.e. 2,4,8,.

· The map is considered to be folded or spherical, therefore squares at the end of a row or column are treated as adjacent squares.

· The simplified logic expression obtained from a K-map is not always unique. Groupings can be made in different ways.

· Before drawing a K-map the logic expression must be in canonical form.

	
	
	[image: image508.png]

	
	
	[image: image509.png]

	
	
	[image: image510.png]

	
	
	[image: image511.png]

	
	
	[image: image512.png]

	
	
	In the next few pages we will see some examples on grouping.

	
	
	[image: image513.png]

	
	
	

	
	
	[image: image514.png]

	
	[image: image515.png]
	Example of invalid groups

	
	
	[image: image516.png]

	
	
	[image: image517.png]

	
	
	[image: image518.png]

	
	[image: image519.png]
	Example - X'Y+XY

	
	
	In this example we have the equation as input, and we have one output function. Draw the k-map for function F with marking 1 for X'Y and XY position. Now combine two 1's as shown in figure to form the single term. As you can see X and X' get canceled and only Y remains.

	
	
	[image: image520.png]

	
	
	F = Y

	
	
	[image: image521.png]

	
	
	[image: image522.png]

	
	
	[image: image523.png]

	
	[image: image524.png]
	Example - X'Y+XY+XY'

	
	
	In this example we have the equation as input, and we have one output function. Draw the k-map for function F with marking 1 for X'Y, XY and XY position. Now combine two 1's as shown in figure to form the two single terms.

	
	
	[image: image525.png]

	
	
	F = X + Y

	
	
	[image: image526.png]

	
	
	[image: image527.png]

	
	
	[image: image528.png]

	
	[image: image529.png]
	3-Variable K-Map

	
	
	There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable K-map. One important thing to note is that K-maps follow the gray code sequence, not the binary one.

	
	
	[image: image530.png]

	
	
	[image: image531.png]

	
	
	[image: image532.png]

	
	
	Using gray code arrangement ensures that minterms of adjacent cells differ by only ONE literal. (Other arrangements which satisfy this criterion may also be used.)

	
	
	[image: image533.png]

	
	
	Each cell in a 3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-variable K-map has n adjacent neighbours.

	
	
	[image: image534.png]

	
	
	[image: image535.png]

	
	
	[image: image536.png]

	
	
	There is wrap-around in the K-map

	
	
	· X'Y'Z' (m0) is adjacent to X'YZ' (m2)

· XY'Z' (m4) is adjacent to XYZ' (m6)

	
	
	[image: image537.png]

	
	
	[image: image538.png]

	
	
	[image: image539.png]

	
	[image: image540.png]
	Example

	
	
	F = XYZ'+XYZ+X'YZ

	
	
	[image: image541.png]

	
	
	[image: image542.png]

	
	
	[image: image543.png]

	
	
	F = XY + YZ

	
	
	[image: image544.png]

	
	[image: image545.png]
	Example

	
	
	F(X,Y,Z) = [image: image546.png](1,3,4,5,6,7)

	
	
	[image: image547.png]

	
	
	[image: image548.png]

	
	
	[image: image549.png]

	
	
	F = X + Z

	4-Variable K-Map

	
	
	There are 16 cells in a 4-variable (W, X, Y, Z); K-map as shown in the figure below.

	
	
	[image: image550.png]

	
	
	[image: image551.png]

	
	
	[image: image552.png]

	
	
	There are 2 wrap-around: a horizontal wrap-around and a vertical wrap-around. Every cell thus has 4 neighbours. For example, the cell corresponding to minterm m0 has neighbours m1, m2, m4 and m8.

	
	
	[image: image553.png]

	
	
	[image: image554.png]

	
	
	[image: image555.png]

	
	[image: image556.png]
	Example

	
	
	F(W,X,Y,Z) = (1,5,12,13)

	
	
	[image: image557.png]

	
	
	[image: image558.png]

	
	
	[image: image559.png]

	
	
	F = WY'Z + W'Y'Z

	
	
	[image: image560.png]

	
	
	

	
	
	[image: image561.png]

	
	[image: image562.png]
	Example

	
	
	F(W,X,Y,Z) = (4, 5, 10, 11, 14, 15)

	
	
	[image: image563.png]

	
	
	[image: image564.png]

	
	
	[image: image565.png]

	
	
	F = W'XY' + WY

	
	
	[image: image566.png]

	
	[image: image567.png]
	5-Variable K-Map

	
	
	There are 32 cells in a 5-variable (V, W, X, Y, Z); K-map as shown in the figure below.

	
	
	[image: image568.png]

	
	
	[image: image569.png]

	
	
	[image: image570.png]

	
	[image: image571.png]
	Inverse Function

	
	
	[image: image572.png]

	
	
	· The 0's on a K-map indicate when the function is 0.

· We can minimize the inverse function by grouping the 0's (and any suitable don't cares) instead of the 1's.

· This technique leads to an expression which is not logically equivalent to that obtained by grouping the 1's (i.e., the inverse of X != X').

· Minimizing for the inverse function may be particularly advantageous if there are many more 0's than 1's on the map.

· We can also apply De Morgan's theorem to obtain a product-of-sum expression.

	QUINE-McCLUSKEY MINIMIZATION

	
	
	Quine-McCluskey minimization method uses the same theorem to produce the solution as the K-map method, namely X(Y+Y')=X

	
	
	[image: image573.png]

	
	
	

	
	
	[image: image574.png]

	
	[image: image575.png]
	Minimization Technique

	
	
	[image: image576.png]

	· The expression is represented in the canonical SOP form if not already in that form.

· The function is converted into numeric notation.

· The numbers are converted into binary form.

· The minterms are arranged in a column divided into groups.

· Begin with the minimization procedure.

· -> Each minterm of one group is compared with each minterm in the group immediately below.

· -> Each time a number is found in one group which is the same as a number in the group below except for one digit, the numbers pair is ticked and a new composite is created.

· -> This composite number has the same number of digits as the numbers in the pair except the digit different which is replaced by an "x".

· The above procedure is repeated on the second column to generate a third column.

· The next step is to identify the essential prime implicants, which can be done using a prime implicant chart.

· -> Where a prime implicant covers a minterm, the intersection of the corresponding row and column is marked with a cross.

· -> Those columns with only one cross identify the essential prime implicants. -> These prime implicants must be in the final answer.

· -> The single crosses on a column are circled and all the crosses on the same row are also circled, indicating that these crosses are covered by the prime implicants selected.

· -> Once one cross on a column is circled, all the crosses on that column can be circled since the minterm is now covered.

· -> If any non-essential prime implicant has all its crosses circled, the prime implicant is redundant and need not be considered further.

· Next, a selection must be made from the remaining nonessential prime implicants, by considering how the non-circled crosses can be covered best.

· -> One generally would take those prime implicants which cover the greatest number of crosses on their row.

· -> If all the crosses in one row also occur on another row which includes further crosses, then the latter is said to dominate the former and can be selected.

· -> The dominated prime implicant can then be deleted.

	
	
	[image: image577.png]

	
	[image: image578.png]
	Example

	Find the minimal sum of products for the Boolean expression, f=[image: image579.png](1,2,3,7,8,9,10,11,14,15), using Quine-McCluskey method.

 Firstly these minterms are represented in the binary form as shown in the table below. The above binary representations are grouped into a number of sections in terms of the number of 1's as shown in the table below.

Binary representation of minterms

	
	
	[image: image580.png]

	
	
	Minterms
U
V
W
X
1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

14

1

1

1

0

15

1

1

1

1

	
	
	[image: image581.png]

	
	
	Group of minterms for different number of 1's

	
	
	[image: image582.png]

	
	
	No of 1's
Minterms
U
V
W
X
1

1

0

0

0

1

1

2

0

0

1

0

1

8

1

0

0

0

2

3

0

0

1

1

2

9

1

0

0

1

2

10

1

0

1

0

3

7

0

1

1

1

3

11

1

0

1

1

3

14

1

1

1

0

4

15

1

1

1

1

	
	
	[image: image583.png]

	
	
	Any two numbers in these groups which differ from each other by only one variable can be chosen and combined, to get 2-cell combination, as shown in the table below.

	
	
	[image: image584.png]

	
	
	2-Cell combinations

	
	
	[image: image585.png]

	
	
	Combinations
U
V
W
X
(1,3)

0

0

-

1

(1,9)

-

0

0

1

(2,3)

0

0

1

-

(2,10)

-

0

1

0

(8,9)

1

0

0

-

(8,10)

1

0

-

0

(3,7)

0

-

1

1

(3,11)

-

0

1

1

(9,11)

1

0

-

1

(10,11)

1

0

1

-

(10,14)

1

-

1

0

(7,15)

-

1

1

1

(11,15)

1

-

1

1

(14,15)

1

1

1

-

	
	
	[image: image586.png]

	
	
	From the 2-cell combinations, one variable and dash in the same position can be combined to form 4-cell combinations as shown in the figure below.

	
	
	[image: image587.png]

	
	
	4-Cell combinations

	
	
	[image: image588.png]

	
	
	Combinations
U
V
W
X
(1,3,9,11)

-

0

-

1

(2,3,10,11)

-

0

1

-

(8,9,10,11)

1

0

-

-

(3,7,11,15)

-

-

1

1

(10,11,14,15)

1

-

1

-

	
	
	[image: image589.png]

	
	
	The cells (1,3) and (9,11) form the same 4-cell combination as the cells (1,9) and (3,11). The order in which the cells are placed in a combination does not have any effect. Thus the (1,3,9,11) combination could be written as (1,9,3,11).

	
	
	[image: image590.png]

	
	
	From above 4-cell combination table, the prime implicants table can be plotted as shown in table below.

	
	
	[image: image591.png]

	
	
	Prime Implicants Table

	
	
	[image: image592.png]

	
	
	Prime Implicants
1
2
3
7
8
9
10
11
14
15
(1,3,9,11)

X

-

X

-

-

X

-

X

-

-

(2,3,10,11)

-

X

X

-

-

-

X

X

-

-

(8,9,10,11)

-

-

-

-

X

X

X

X

-

-

(3,7,11,15)

-

-

-

-

-

-

X

X

X

X

-

X

X

-

X

X

-

-

-

X

-

	
	
	[image: image593.png]

	
	
	The columns having only one cross mark correspond to essential prime implicants. A yellow cross is used against every essential prime implicant. The prime implicants sum gives the function in its minimal SOP form
Y = V'X + V'W + UV' + WX + UW

.

	
	
	[image: image594.png]

[image: image595][image: image596]
